精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左右焦点分别为,其短轴的两个端点分别为,若;是边长为2的等边三角形.

1)求椭圆的方程;

2)过点且斜率为的直线交椭圆两点,在轴上是否存在定点,使得直线的斜率乘积为定值,若存在,求出定点,若不存在,请说明理由.

【答案】12)存在;定点

【解析】

1)根据已知可得,即可求出椭圆的方程;

2)假设满足条件的定点存在,设为,设直线的方程为,与椭圆方程联立,设,得到关系,再由,利用关系,化简为关系式,利用其为定值则不含项,进而得到关于的方程,求解即可.

1)因为是边长为2的等边三角形,

所以,解得,所以

所以椭圆的方程为.

2)依题意直线斜率存在,设直线的方程为

整理得

时,得

设存在定点满足题意,则

.

,当

故存在满足题意的定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:当时,函数有唯一的极值点;

2)设为正整数,若不等式内恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区100名患者的相关信息,得到如下表格:

潜伏期(单位:天)

人数

85

205

310

250

130

15

5

1)求这1000名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);

2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;

潜伏期

潜伏期

总计

50岁以上(含50岁)

100

50岁以下

55

总计

200

附:

0.05

0.025

0.010

3.841

5.024

6.635

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点在圆上,直线交椭圆于两点.

1)求椭圆的方程;

2)若为坐标原点),求的值;

3)设点关于轴对称点为与点不重合),且直线轴交于点,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线与曲线交于两点,且的周长为

(Ⅰ)求曲线的方程.

(Ⅱ)设过曲线焦点的直线与曲线交于两点,记直线的斜率分别为.求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是离心率为的椭圆的左、右顶点,是椭圆的右焦点,且.

1)求椭圆的方程;

2)已知动直线与椭圆有且只有一个公共点.

①若轴于点,求点横坐标的取值范围;

②设直线交直线于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线与抛物线交于两点.

1)若过点,证明:

2)若,点在曲线上,的中点均在抛物线上,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知为抛物线上一点,斜率分别为的直线PAPB分别交抛物线于点AB(不与点P重合).

1)证明:直线AB的斜率为定值;

2)若△ABP的内切圆半径为.

i)求△ABP的周长(用k表示);

ii)求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点为正方形上异于点的动点,将沿翻折成,在翻折过程中,下列说法正确的是(

A.存在点和某一翻折位置,使得

B.存在点和某一翻折位置,使得平面

C.存在点和某一翻折位置,使得直线与平面所成的角为45°

D.存在点和某一翻折位置,使得二面角的大小为60°

查看答案和解析>>

同步练习册答案