【题目】已知函数 . (Ⅰ)求 的值;
(Ⅱ)求f(x)图象的对称轴方程;
(Ⅲ)求f(x)在 上的最大值与最小值.
科目:高中数学 来源: 题型:
【题目】若函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)写出函数f(x)(x∈R)的解析式.
(2)若函数g(x)=f(x)+(4﹣2a)x+2(x∈[1,2]),求函数g(x)的最小值h(a).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|3≤3x≤27},B={x|log2x>1}. (Ⅰ)求A∩B,A∪B;
(Ⅱ)已知非空集合C={x|1<x≤a},若CA,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|2a﹣1<x<3a+1},集合B={x|﹣1<x<4}.
(1)若AB,求实数a的取值范围;
(2)是否存在实数a,使得A=B?若存在,求出a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数g(x)=x2﹣2x+1+mlnx,(m∈R).
(1)当m=1时,求函数y=g(x)在点(1,0)处的切线方程;
(2)当m=﹣12时,求f(x)的极小值;
(3)若函数y=g(x)在x∈( ,+∞)上的两个不同的数a,b(a<b)处取得极值,记{x}表示大于x的最小整数,求{g(a)}﹣{g(b)}的值(ln2≈0.6931,ln3≈1.0986).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)= ,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点,例如y=|x|是[﹣2,2]上的平均值函数,0就是它的均值点,若函数f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函数”,则实数m的取值范围是( )
A.[﹣1,1]
B.(0,2)
C.[﹣2,2]
D.(0,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要得到函数y=3cosx的图象,只需将函数y=3sin(2x﹣ )的图象上所有点的( )
A.横坐标缩短到原来的 (纵坐标不变),所得图象再向左平移 个单位长度
B.横坐标缩短到原来的 (纵坐标不变),所得图象再向右平移 个单位长度
C.横坐标伸长到原来的2倍(纵坐标不变),所得图象再向左平移 个单位长度
D.横坐标伸长到原来的2倍(纵坐标不变),所得图象再向右平移 个单位长度
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com