精英家教网 > 高中数学 > 题目详情

【题目】已知函数 . (Ⅰ)求 的值;
(Ⅱ)求f(x)图象的对称轴方程;
(Ⅲ)求f(x)在 上的最大值与最小值.

【答案】解:(Ⅰ) =
=

(Ⅱ)
=
=

得f(x)图象的对称轴方程为
(Ⅱ)当 时,
故得当 ,即 时,fmin(x)=﹣2;
,即 时,
【解析】(Ⅰ)化简f(x)的解析式,将x= 带入解析式求值即可;(Ⅱ)根据函数的解析式以及正弦函数的性质,得到 ,求出函数图象的对称轴即可;(Ⅲ)根据x的范围,求出2x﹣ 的范围,从而求出f(x)的最大值和最小值即可.
【考点精析】本题主要考查了三角函数的最值的相关知识点,需要掌握函数,当时,取得最小值为;当时,取得最大值为,则才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若函数y=f(f(x)﹣a)﹣1有三个零点,则a的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)写出函数f(x)(x∈R)的解析式.
(2)若函数g(x)=f(x)+(4﹣2a)x+2(x∈[1,2]),求函数g(x)的最小值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)求曲线在点处的切线方程;

2)当时,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|3≤3x≤27},B={x|log2x>1}. (Ⅰ)求A∩B,A∪B;
(Ⅱ)已知非空集合C={x|1<x≤a},若CA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2a﹣1<x<3a+1},集合B={x|﹣1<x<4}.
(1)若AB,求实数a的取值范围;
(2)是否存在实数a,使得A=B?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数g(x)=x2﹣2x+1+mlnx,(m∈R).
(1)当m=1时,求函数y=g(x)在点(1,0)处的切线方程;
(2)当m=﹣12时,求f(x)的极小值;
(3)若函数y=g(x)在x∈( ,+∞)上的两个不同的数a,b(a<b)处取得极值,记{x}表示大于x的最小整数,求{g(a)}﹣{g(b)}的值(ln2≈0.6931,ln3≈1.0986).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)= ,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点,例如y=|x|是[﹣2,2]上的平均值函数,0就是它的均值点,若函数f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函数”,则实数m的取值范围是(
A.[﹣1,1]
B.(0,2)
C.[﹣2,2]
D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数y=3cosx的图象,只需将函数y=3sin(2x﹣ )的图象上所有点的(
A.横坐标缩短到原来的 (纵坐标不变),所得图象再向左平移 个单位长度
B.横坐标缩短到原来的 (纵坐标不变),所得图象再向右平移 个单位长度
C.横坐标伸长到原来的2倍(纵坐标不变),所得图象再向左平移 个单位长度
D.横坐标伸长到原来的2倍(纵坐标不变),所得图象再向右平移 个单位长度

查看答案和解析>>

同步练习册答案