分析 根据函数为奇函数可得-f(-2m-2)=f(2m+2),利用单调性可得cos2θ+2msinθ<2m+2恒成立.利用换元法令t=sinθ∈[0,1],真理为t2-2mt+2m+1>0在t∈[0,1]恒成立.对二次函数的对称轴分别讨论,求出区间内的最小值即可.
解答 解:由条件可得:f(cos2θ+2msinθ)<-f(-2m-2)
由于函数是定义在R上的单调递增奇函数,
∴cos2θ+2msinθ<2m+2恒成立.
设t=sinθ∈[0,1],
∴t2-2mt+2m+1>0在t∈[0,1]恒成立.
只要g(t)=t2-2mt+2m+1在[0,1]的最小值大于0即可.
(1)当m<0时,最小值为g(0)=2m+1>0,所以可得:0>m>-$\frac{1}{2}$
(2)当0≤m≤1时,最小值为g(m)=-m2+2m+1>0,所以可得:0≤m≤1
(3)当m>1时,最小值为g(1)=2>0恒成立,得:m>1,(13分)
综之:m>-$\frac{1}{2}$,
故答案为m>-$\frac{1}{2}$.
点评 考查了奇函数的性质和应用,二次函数闭区间上最小值的求法.属于基础题型,应熟练掌握.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y-$\frac{π}{3}$=$\sqrt{3}$(x-2) | B. | y-$\frac{2π}{3}$=$\sqrt{3}$(x-4) | C. | y-$\frac{2π}{3}$=2(x-4) | D. | y-$\frac{2π}{3}$=2(x-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,1) | B. | (-2,-1) | C. | (0,-2) | D. | (-2,-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | A、[0,2] | B. | [0,2) | C. | (-∞,2] | D. | (-∞,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,-$\frac{1}{2}$] | B. | (-2,-$\frac{1}{2}$] | C. | [-$\frac{1}{2}$,+∞) | D. | (-$\frac{1}{2}$,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com