精英家教网 > 高中数学 > 题目详情
19.设F1、F2分别是双曲线C:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的左右焦点,过F2的直线交双曲线于P,Q两点,若|PQ|=10,则△PQF1的周长为32.

分析 根据双曲线的定义和性质,即可求出三角形的周长.

解答 解:由双曲线的方程可知a=3,
则|PF1|-|PF2|=6,|QF1|-|QF2|=6,
则|PF1|+|QF1|-(|QF2|+|PF2|)=12,
即|PF1|+|QF1|=|QF2|+|PF2|+12=|PQ|+12=22,
则△PQF1的周长为|PF1|+|QF1|+|PQ|=32,
故答案为:32.

点评 本题主要考查双曲线的定义,根据双曲线的定义得到P,Q到两焦点距离之差是个常数是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设x∈R,则命题q:x>-1是命题p:x>0的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=(a2$-\frac{5}{2}$a+2)ax是指数函数且在R上单调递增
(1)求f(x)
(2)已知g(x)=pf(2x)-f(x)+p+2在[-2,2]上的值域为[$\frac{11}{4}$,15],求p值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四边形PABC中,PB⊥AC,AD=BD=1,AC=3,E是PC上一点,且PE:EC=1:2,现将△PAC沿AC进行翻折,得到如图②所示的三棱锥P-ABC.
(1)证明:DE∥平面PAB;
(2)证明:在翻折的过程中,总有平面PDB⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,正三棱柱ABC-A′B′C′中,F是线段B′C′的中点,D,E分别是线段BB′,B′C′上的点,连接DE,BF,A′E,A′F,A′D,A′B,AC′,且2B′D=DB,B′E=$\frac{1}{4}$B′C′.
(1)探究平面A′BF与平面BCC′B′的位置关系,并进行说明;
(2)证明:AC′∥平面 A′DE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.双曲线方程为x2-4y2=-36,则它的标准方程为$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{36}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若直线l与椭圆$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1相交于A、B两点,满足$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,且直线1与圆x2+y2=r2相切.
(1)求圆的方程;
(2)求弦长|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在正方体中,E、F为所在棱的中点,求证:D1、E、F、B四点共面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow{a}$+$\overrightarrow{b}$=(2,-8),$\overrightarrow{a}$-$\overrightarrow{b}$=(-8,16),求$\overrightarrow{a}$•$\overrightarrow{b}$和cos<$\overrightarrow{a}$•$\overrightarrow{b}$>.

查看答案和解析>>

同步练习册答案