精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知圆心在轴上的圆经过两点,直线的方程为.

1)求圆的方程;

2)当时,为直线上的定点,若圆上存在唯一一点满足,求定点的坐标;

3)设点AB为圆上任意两个不同的点,若以AB为直径的圆与直线都没有公共点,求实数的取值范围.

【答案】1;(2 ;(3.

【解析】

1)根据题意,设圆的方程为,列方程解得即可;

2)根据题意,利用得点的轨迹方程为,再利用两圆相切解得即可.

3)记以为直径的圆为圆,设,得圆的半径,利用,表示出动点的轨迹为以为圆心,为半径的圆的内部(含边界),再利用点C到直线l的距离,解得即可.

1)设圆的方程为,将MN坐标带入,

得: ,解得

所以圆的方程为.

2)设,由,即

化简得

由题意,此圆与圆C相切,故,解得

所以

3)记以AB为直径的圆为圆M,设圆M上有一动点

,则圆M的半径,于是

,其中的夹角,.

因为,所以.

故点在以为圆心,为半径的圆的内部(含边界)

所以点C到直线l的距离,即,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C:的左、右项点分别为A1,A2,左右焦点分别为F1,F2,离心率为,|F1F2|=,O为坐标原点.

(1)求椭圆C的方程;

(2)设过点P(4,m)的直线PA1,PA2与椭圆分别交于点M,N,其中m>0,求的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)若在区间上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在海岸处,发现北偏东方向,距离海里的处有一艘走私船,在处北偏西方向,距离海里的处有一艘缉私艇奉命以海里/时的速度追截走私船,此时,走私船正以海里/时的速度从处向北偏东方向逃窜.

(1)问船与船相距多少海里?船在船的什么方向?

(2)问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个动点到点的距离比到直线的距离多1.

(1)求动点的轨迹的方程;

(2)若过点的直线与曲线交于两点,且线段中点是点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, 均为等边三角形,且平面平面的中点.

(1)求证: 平面

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对函数f(x)xsinx,现有下列命题:函数f(x)是偶函数;函数f(x)的最小正周期是0)是函数f(x)的图象的一个对称中心;函数f(x)在区间上单调递增,在区间上单调递减.其中是真命题的是________(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,若在曲线上存在点使得,则实数的取值范围为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知线段AB的端点B的坐标为(3,0),端点A在圆上运动;

(1)求线段AB中点M的轨迹方程;

(2)过点C(1,1)的直线mM的轨迹交于GH两点,当△GOHO为坐标原点)的面积最大时,求直线m的方程并求出△GOH面积的最大值.

(3)若点C(1,1),且PM轨迹上运动,求的取值范围.

查看答案和解析>>

同步练习册答案