分析 利用函数的极限值等于该点的函数值,列出方程求解即可
解答 解:由于 $\lim_{x→1}$f(x)=$\lim_{x→1}$$\frac{{x}^{2}-1}{{x}^{2}-3x+2}$=$\lim_{x→1}$$\frac{x+1}{x-2}$=-2,
∵f(1)=-2,
∴函数f(x)=$\left\{\begin{array}{l}{\frac{{x}^{2}-1}{{x}^{2}-3x+2},x≠1}\\{-2,x=1}\end{array}\right.$,在x=1处连续.
点评 本题主要考查罗比达法则的应用,函数在某处连续的定义,利用分段函数在某处连续时,则两段的函数值在此处相等,属于基础题,对求极限的代数式进行变形是解本题的关键.
科目:高中数学 来源: 题型:选择题
A. | 14 | B. | 10 | C. | 12 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 8 | B. | 10 | C. | 12 | D. | 14 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2$\sqrt{3}$ | B. | 4$\sqrt{3}$ | C. | 8$\sqrt{3}$ | D. | 16$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com