精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形ABCD是平行四边形,点EFG分别为线段BCPBAD的中点.

1)证明:EF∥平面PAC

2)证明:平面PCG∥平面AEF

3)在线段BD上找一点H,使得FH∥平面PCG,并说明理由.

【答案】1)见解析 2)见解析 3)见解析

【解析】

1)证明EF∥平面PAC即得证;(2)证明AE∥平面PCGEF∥平面PCG,平面PCG∥平面AEF即得证;(3)设AEGCBD分别交于MN两点,证明N点为所找的H点.

1)证明:∵EF分别是BCBP中点,

PC平面PACEF平面PAC

EF∥平面PAC

2)证明:∵EG分别是BCAD中点,

AECG

AE平面PCGCG平面PCG

AE∥平面PCG

又∵EFPCPC平面PCGEF平面PCG

EF∥平面PCGAEEFE点,AEEF平面AEF

∴平面AEF∥平面PCG

3)设AEGCBD分别交于MN两点,易知FN分别是BPBM中点,

PM平面PGCFN平面PGC

FN∥平面PGC

N点为所找的H点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 如图所示的几何体中, 平面,且平面,正方形的边长为2为棱中点,平面分别与棱交于点.

(Ⅰ)求证:

)求证:平面平面

)求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,命题:对,不等式恒成立;命题,使得成立.

(1)若为真命题,求的取值范围;

(2)当时,若假,为真,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】RtABC中,∠B90°BC6AB8,点MABC内切圆的圆心,过点M作动直线l与线段ABAC都相交,将ABC沿动直线l翻折,使翻折后的点A在平面BCM上的射影P落在直线BC上,点A在直线l上的射影为Q,则的最小值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面是两个相交平面,其中,则

A.平面内一定能找到与平行的直线

B.平面内一定能找到与垂直的直线

C.若平面内有一条直线与平行,则该直线与平面平行

D.若平面内有无数条直线与垂直,则平面与平面垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂每日生产一种产品吨,每日生产的产品当日销售完毕,日销售额为万元,产品价格随着产量变化而有所变化,经过段时间的产销, 得到了的一组统计数据如下表:

日产量

1

2

3

4

5

日销售量

5

12

16

19

21

(1)请判断中,哪个模型更适合到画之间的关系?可从函数增长趋势方面给出简单的理由;

(2)根据你的判断及下面的数据和公式,求出关于的回归方程,并估计当日产量时,日销售额是多少?

参考数据:

线性回归方程中,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

1)求的值;

2)判断函数的单调性,并用定义证明;

3)当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着西部大开发的深入,西南地区的大学越来越受到广大考生的青睐.下表是西南地区某大学近五年的录取平均分与省一本线对比表:

年份

年份代码

省一本线

录取平均分

录取平均分与省一本线分差

(1)根据上表数据可知,之间存在线性相关关系,求关于的性回归方程;

(2)假设2019年该省一本线为分,利用(1)中求出的回归方程预测2019年该大学录取平均分.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某煤炭公司销售人员根据该公司以往的销售情况,得到如下频率分布表

日销售量分组

[2,4)

[4,6)

[6,8)

[8,10)

[10,12]

频率

0.10

0.20

0.30

0.25

0.15

(1)在下图中作出这些数据的频率分布直方图;

(2)将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.若未来3天内日销售量不低于6吨的天数为X,求X的分布列、数学期望与方差.

查看答案和解析>>

同步练习册答案