精英家教网 > 高中数学 > 题目详情
20.学校有两个食堂,现有3名学生前往就餐,则三个人不在同一个食堂就餐的概率是$\frac{3}{4}$.

分析 先求出在同一个食堂就餐的概率,从而求出不在同一个食堂就餐的概率即可.

解答 解:三名学生选择每一个食堂的概率均为$\frac{1}{2}$,
则他们同时选中A食堂的概率为:$\frac{1}{2}$×$\frac{1}{2}$×$\frac{1}{2}$=$\frac{1}{8}$;
他们同时选中B食堂的概率也为:$\frac{1}{2}$×$\frac{1}{2}$×$\frac{1}{2}$=$\frac{1}{8}$;
故们在同一个食堂用餐的概率P=$\frac{1}{8}$+$\frac{1}{8}$=$\frac{1}{4}$,
故三个人不在同一个食堂就餐的概率是:$\frac{3}{4}$,
故答案为:$\frac{3}{4}$.

点评 本题考查了概率问题,作差即可,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.函数f(x)=3cos2$\frac{ωx}{2}$+$\frac{\sqrt{3}}{2}$sinωx-$\frac{3}{2}$(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为等边三角形.将函数f(x)的图象上各点的横坐标变为原来的π倍,将所得图象向右平移$\frac{2π}{3}$个单位,再向上平移1个单位,得到函数y=g(x)的图象
(1)求函数g(x)的解析式;
(2)求h(x)=lg[g(x)-$\frac{5}{2}$]的定义域;
(3)若3sin2$\frac{x}{2}$-$\sqrt{3}$m[g(x)-1]≥m+2对任意x∈[0,2π]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆$\frac{x^2}{10-m}+\frac{y^2}{m-2}=1$,长轴在y轴上,若焦距为8,则m等于(  )
A.4B.8C.14D.38

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.{an}为等比数列,若a2=2,a5=$\frac{1}{4}$,则a1a2+a2a3+…+anan+1=$\frac{32}{3}$(1-$\frac{1}{{4}^{n}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对于数列{an},称P(ak)=$\frac{1}{k-1}(|{{a_1}-{a_2}}|+|{{a_2}-{a_3}}|+…+|{{a_{k-1}}-{a_k}}|)$(其中k≥2,k∈N)为数列{an}的前k项“波动均值”.若对任意的k≥2,k∈N,都有P(ak+1)<P(ak),则称数列{an}为“趋稳数列”.
(1)若数列1,x,2为“趋稳数列”,求x的取值范围;
(2)已知等差数列{an}的公差为d,且a1>0,d>0,其前n项和记为Sn,试计算:Cn2P(S2)+Cn3P(S3)+…+CnnP(Sn)(n≥2,n∈N);
(3)若各项均为正数的等比数列{bn}的公比q∈(0,1),求证:{bn}是“趋稳数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对于两个平面α,β和两条直线m,n,下列命题中真命题是(  )
A.若m⊥α,m⊥n,则n∥αB.若m∥α,α⊥β,则m⊥β
C.若m∥α,n∥β,α⊥β,则m⊥nD.若m⊥α,n⊥β,α⊥β,则m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如表示采集的商品零售额(万元)与商品流通费率的一组数据:
 商品零售额 9.511.5 13.5 15.5 17.5 19.5 21.5 23.5 25.5 27.5 
 商品流通费率 6.0 4.6 4.0 3.22.8 2.5 2.4 2.3 2.2 2.1 
(1)将商品零售额作为横坐标,商品流通费率作为纵坐标,在平面直角坐标系内作出散点图;
(2)商品零售额与商品流通费率具有线性相关关系吗?如果商品零售额是20万元,那么能否预测此时流通费率是多少呢?(b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$ a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,|$\overrightarrow{OC}$|=$\sqrt{3}$,∠AOB=60°,$\overrightarrow{OB}$⊥$\overrightarrow{OC}$.若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,则x,y的值分别是(  )
A.-2,-1B.-2,1C.2,-1D.2,1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.有一个正三角形的两个顶点在抛物线y2=2px(p>0)上,另一顶点在原点,则该三角形的边长是(  )
A.2$\sqrt{3}$pB.4$\sqrt{3}$pC.6$\sqrt{3}$pD.8$\sqrt{3}$p

查看答案和解析>>

同步练习册答案