精英家教网 > 高中数学 > 题目详情

【题目】已知点,点分别为椭圆的左右顶点,直线于点是等腰直角三角形,且

(1)求的方程;

(2)设过点的动直线相交于两点,为坐标原点.当为直角时,求直线的斜率.

【答案】(1);(2).

【解析】

(1)由题意知,求得,再由,代入椭圆方程,解得,即可得到椭圆的方程;

(2)设l的方程为y=kx+2,与椭圆的方程联立方程组,利用二次方程中根与系数的关系,求得,又由∠MON能为直角时,利用列出方程,即可求解.

(1)由题意知,a=2,B(2,0),设Q(x0,y0),由,得

代入椭圆方程,解得b2=1. ∴椭圆方程为.

(2)由题意可知,直线l的斜率存在,令l的方程为y=kx+2,M(x1,y1),N(x2,y2),

整理得:(1+4k2)x2+16kx+12=0,

由直线l与E有两个不同的交点,则△>0,

即(16k)2﹣4×12×(1+4k2)>0,解得.

由韦达定理可知:.

当∠MON能为直角时,,即

则x1x2+y1y2=x1x2+(kx1+2)(kx2+2)=(1+k2)x1x2+2k(x1+x2)+4

,解得k2=4,即.

综上可知,直线l的斜率时,∠MON为直角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】的方程为:为圆上任意一点,过轴的垂线,垂足为,点上,且.

(1)求点的轨迹的方程;

(2)过点的直线与曲线交于两点,点的坐标为的面积为,求的最大值,及直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种笼具由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为,高为,圆锥的母线长为.

1)求这种笼具的体积(结果精确到0.1);

2)现要使用一种纱网材料制作50笼具,该材料的造价为每平方米8元,共需多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用长度分别为的四根木条围成一个平面四边形,则该平面四边形面积的最大值是____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率;先由计算器给出09之间取整数值的随机数,指定0、1、2、3表示没有击中目标, 4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数,根据以下数据估计该射击运动员射击4次至少击中3次的概率为(

7527 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

A.0.4B.0.45C.0.5D.0.55

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形中(图1),的中点,,且,现将此平面四边形沿折起,使得二面角为直二面角,得到一个多面体,为平面内一点,且为正方形(图2),分别为的中点.

1)求证:平面//平面

2)在线段上是否存在一点,使得平面与平面所成二面角的余弦值为?若存在,求出线段的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的平面内,若函数的图象与轴围成一个封闭的区域,将区域沿轴的正方向平移8个单位长度,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域的面积相等,则此圆柱的体积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,点中点,且,现将三角形沿折起,使点到达点的位置,且与平面所成的角为.

(1)求证:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆分别为其左、右焦点,过的直线与此椭圆相交于两点,且的周长为8,椭圆的离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)在平面直角坐标系中,已知点与点,过的动直线(不与轴平行)与椭圆相交于两点,点是点关于轴的对称点.求证:

i三点共线.

ii

查看答案和解析>>

同步练习册答案