精英家教网 > 高中数学 > 题目详情

【题目】已知函数
(1)求函数f(x)的最小正周期和单调减区间;
(2)已知△ABC的三个内角A,B,C的对边分别为a,b,c,其中a=7,若锐角A满足 ,且 ,求△ABC的面积.

【答案】
(1)解: =

因此f(x)的最小正周期为

,可得kπ+ ≤x≤kπ+ ,k∈Z,

即f(x)的单调递减区间为 (k∈Z)


(2)解:由

又A为锐角,则

由正弦定理可得

由余弦定理可知,

可求得bc=40,


【解析】(1)运用二倍角的正弦公式和余弦公式,以及两角和的正弦公式,由正弦函数的周期公式及单调递减区间,解不等式可得;(2)由条件 ,可得角A,再运用正弦定理可得b+c=13,由余弦定理,可得bc=40,由三角形的面积公式计算即可得到所求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数.

(1)判断并证明上的单调性.

(2)若对任意实数t,不等式恒成立,求实数k的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心为,直线过点且与轴不重合,交圆两点,过的平行线交于点.

(1)证明:为定值,并写出点的轨迹方程;

(2)设点的轨迹为曲线,直线两点,为坐标原点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对一切实数都有 成立,且.

(1)求的值;

(2)求的解析式;

(3)已知,设:当时,不等式 恒成立;Q:当时,是单调函数。如果满足成立的的集合记为,满足Q成立的的集合记为,求A∩(CRB)(为全集).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a﹣(aR)

(1)如果函数f(x)为奇函数,求实数a的值;

(2)证明:对任意的实数a,函数f(x)在(﹣∞+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD的底面ABCD为菱形,且∠ABC=60°,
AB=PC=2,PA=PB=

(1)求证:平面PAB⊥平面ABCD;
(2)设H是PB上的动点,求CH与平面PAB所成最大角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要制作一个容积为8m3 , 高为2m的无盖长方体容器,若容器的底面造价是每平方米200元,侧面造型是每平方米100元,则该容器的最低总造价为(
A.1200元
B.2400元
C.3600元
D.3800元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中与f(x)=x是同一函数的有(  )

y=y=y=y=f(t)=tg(x)=x

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(xy)=f(x)+f(y).

(1) xyR,求f(1),f(-1)的值; (2)xyR,判断yf(x)的奇偶性;

(3)若函数f(x)在其定义域(0,+∞)上是增函数,f(2)=1,f(x)+f(x-2)≤3,x的取值范围。

查看答案和解析>>

同步练习册答案