精英家教网 > 高中数学 > 题目详情

已知三条直线l1:2x-y+a=0(a>0),直线l2:4x-2y-1=0和直线l3:x+y-1=0,且l1l2的距离是

(1)求a的值.

(2)能否找到一点P,使得P点同时满足下列3个条件:①P是第一象限的点;②P点到l1的距离是P到l2的距离的;③P点到l1的距离与P点到l3的距离之比是?若能,求P点的坐标;若不能,请说明理由.

答案:
解析:

  解:(1)根据题意得:l1l2的距离d=a=3或a=-4(舍).

  (2)设P点坐标为(x0,y0),则x0>0,y0>0.若P点满足条件②,

  则2×|8x0-4y0+12|=|4x0-2y0-1|,

  8x0-4y0+12=4x0-2y0-1或8x0-4y0+12=-(4x0-2y0-1)4x0-2y0+13=0或12x0-6y0+11=0; ①

  若P点满足条件③,

  则|2x0-y0+3|=|x0+y0-1|,

  2x0-y0+3=x0+y0-1或2x0-y0+3=-(x0+y0-1),

  x0-2y0+4=0或3x0+2=0; ②

  由①②得

  解得

  故满足条件的点P为(-3,)或()或()或().


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三条直线l1:2x-y+a=0(a>0),直线l2:-4x+2y+1=0和直线l3:x+y-1=0,且l1与l2的距离是
7
10
5

(1)求a的值;
(2)求l3到l1的角θ;
(3)能否找到一点P,使得P点同时满足下列三个条件:①P是第一象限的点;②P点到l1的距离是P点到l2的距离的
1
2
;③P点到l1的距离与P点到l3的距离之比是
2
5
?若能,求P点坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三条直线l1:2x-y+a=0(a>0),l2:-4x+2y+1=0和l3:x+y-1=0,且l1与l2的距离是
7
5
10

(1)求a的值;
(2)能否找到一点P同时满足下列三个条件:
①P是第一象限的点;
②点P到l1的距离是点P到l2的距离的
1
2

③点P到l1的距离与点P到l3的距离之比是
2
5
?若能,求点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三条直线l1:2x-y+a=0(a>0),直线l2:-4x+2y+1=0和直线l3:x+y-1=0,且l1与l2的距离是.

(1)求a的值;w.w.w.k.s.5.u.c.o.m           

(2)求l3到l1的角θ;

(3)能否找到一点P,使得P点同时满足下列三个条件:①P是第一象限的点;②P点到l1的距离是P点到l2的距离的;③P点到l1的距离与P点到l3的距离之比是?若能,求P点坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三条直线l1:2x-y+a=0(a>0),直线l2:-4x+2y+1=0和直线l3:x+y-1=0,且直线l1与直线l2的距离是.

(1)求实数a的值;

(2)能否找到一点P,使得P点同时满足下列三个条件:①P是第一象限的点;②P点到直线l1的距离是P点到直线l2的距离的;③P点到直线l1的距离与P点到直线l3的距离之比为.若能,求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三条直线l1:2x-y+3=0,直线l2:-4x+2y+1=0和直线l3:x+y-1=0.能否找到一点P,使得P点同时满足下列三个条件:(1)P是第一象限的点;(2)P点到l1的距离是P点到l2的距离的;(3)P点到l1的距离与P点到l3的距离之比是.若能,求P点坐标;若不能,请说明理由.

查看答案和解析>>

同步练习册答案