精英家教网 > 高中数学 > 题目详情

设m为实数,函数f(x)=-+2x+m,x∈R
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)求证:当m≤1且x>0时,>2+2mx+1.

(Ⅰ)增区间,减区间;(Ⅱ)构造函数,再证明即可得证.

解析试题分析:(Ⅰ)利用求导的方法求得单调区间,再求极值;(Ⅱ)先构造,再证得,即上为增函数,所以,故.
试题解析:(Ⅰ),令可得
易知为增函数,
为减函数,
所以函数有极大值,无极小值,极大值为.        (6分)
(Ⅱ)令,则

由(Ⅰ)知,当时, ,所以
上为增函数,
所以,故.              (12分)
考点:1.用导数求函数的单调区间;2.利用导数的方法证明不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知
(1)若时,求函数在点处的切线方程;
(2)若函数上是减函数,求实数的取值范围;
(3)令是否存在实数,当是自然对数的底)时,函数的最小值是3,
若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(Ⅱ)当时,不等式恒成立,求实数的取值范围.
(Ⅲ)求证:,e是自然对数的底数).
提示:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数,e=2.718…,且函数y=f(x)和y=g(x)的图像在它们与坐标轴交点处的切线互相平行.
(1)求常数a的值;(2)若存在x使不等式>成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)是否存在点,使得函数的图像上任意一点P关于点M对称的点Q也在函数的图像上?若存在,求出点M的坐标;若不存在,请说明理由;
(2)定义,其中,求
(3)在(2)的条件下,令,若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若在(0,)单调递减,求a的最小值
(Ⅱ)若有两个极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知处取得极值。
(Ⅰ)证明:
(Ⅱ)是否存在实数,使得对任意?若存在,求的所有值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1) 当时,求函数的单调区间;
(2) 当时,函数图象上的点都在所表示的平面区域内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(其中).
(Ⅰ) 当时,求函数的单调区间;
(Ⅱ) 当时,求函数上的最大值.

查看答案和解析>>

同步练习册答案