精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为.

(1)求动点的轨迹的方程;

(2)过动点作曲线的两条切线,切点分别为,求证:的大小为定值.

【答案】(1)(2)见解析

【解析】试题分析:

(1)由题意可得点的轨迹是抛物线.焦点为,准线为

所以曲线的方程为

(2) 由题意,设切线方程为

联立直线与抛物线方程由题意可得,所以,为定值.

试题解析:

解:(1) 因为直线垂直,所以为点到直线的距离.

连结,因为为线段的中垂线与直线的交点,所以

所以点的轨迹是抛物线.

焦点为,准线为

所以曲线的方程为

(2)由题意,过点的切线斜率存在,设切线方程为

联立

所以,即(*),

因为,所以方程(*)存在两个不等实根,设为

因为,所以,为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和Sn满足:Sn=n2 , 等比数列{bn}满足:b2=2,b5=16
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)对任意,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心在轴上,并且过两点.

(1)求圆的方程;

(2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的前n项和为Sn , 且an和Sn满足:4Sn=(an+1)2(n=1,2,3…),
(1)求{an}的通项公式;
(2)设bn= ,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分10分)

(2017天津电视台播放甲乙两套连续剧每次播放连续剧时需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:

连续剧播放时长(分钟)

广告播放时长分钟

收视人次

70

5

60

60

5

25

已知电视台每周安排的甲乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用表示每周计划播出的甲乙两套连续剧的次数

(1)列出满足题目条件的数学关系式并画出相应的平面区域

2问电视台每周播出甲乙两套连续剧各多少次才能使收视人次最多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得 =80, =20, yi=184, =720.
(1)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;
(2)判断变量x与y之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程y=bx+a中,b= ,a= ﹣b ,其中 为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, ,四边形为矩形,且平面 .

(1)求证: 平面

(2)点在线段(含端点)上运动,当点在什么位置时,平面与平面所成锐二面角最大,并求此时二面角的余弦值.

查看答案和解析>>

同步练习册答案