精英家教网 > 高中数学 > 题目详情
11.几何体的三视图如右图所示,则该几何体的体积为9.

分析 根据几何体的三视图,得出该几何体是底面为直角梯形的四棱锥,结合图中数据求出它的体积.

解答 解:根据几何体的三视图,得;
该几何体是底面为直角梯形的四棱锥,
且底面直角梯形的上底边长为2,下底边长为4,梯形的高为3,
四棱锥的高为3;
所以该四棱锥的体积为V=$\frac{1}{3}$×$\frac{1}{2}$×(2+4)×3×3=9.
故答案为:9.

点评 本题考查了利用空间几何体的三视图求体积的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.有下列命题:
①双曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1与椭圆$\frac{x^2}{35}+{y^2}=1$有相同的焦点;
②“$-\frac{1}{2}<x<0$”是“2x2-5x-3<0”的必要不充分条件;
③对于函数f(x)=x3-3x2,f(0)=0是极大值,f(2)=-4是极小值;
④?x∈R,x2-3x+3≠0.
其中真命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设$f(x)=\left\{\begin{array}{l}cosπx(x<\frac{1}{2})\\ 2f(x-1)(x>\frac{1}{2})\end{array}\right.$,则$f(\frac{1}{3})+f(\frac{13}{6})$=$\frac{1}{2}+2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若n∈N*,则1+2+22+23+…+2n+1=(  )
A.A2n+1-1B.2n+2-1C.$\frac{(n+2)(1+{2}^{n+1})}{2}$D.$\frac{(n+1)(1+{2}^{n+1})}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.{an}的前n顶和为Sn,a1=1,Sn=2an-1,则Sn=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.集合M是满足下列性质的函敖f(x)的全体;存在非零常数T,对任意X∈R,有f(x+T)=Tf(x)成立,已知f(x)=x,g(x)=a,(a>0且a≠1)则(  )
A.f(x)∈M且g(x)∈MB.f(x)∉M,g(x)∈MC.f(x)∈M,g(x)∉MD.f(x)∉M且g(x)∉M

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.己知函数f(x)=$\frac{1}{3}{x}^{3}-a{x}^{2}-3ax+b$,实数a>0,b>0.若函数f(x)在x=0处的切线斜率为-3,
(1)试确定a的值;
(2)若b=0,求f(x)的极大值和极小值;
(3)若当x∈[b,3b]时,f(x)>4b恒成立.求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,梯形ABCD中,AB∥CD,AD=BC=5,AB=10,CD=4,动点P自B点出发沿路线BC→CD→DA运动,最后到达A点你的P的运动路程为x,△ABP面积为y,试求y=f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.甲、乙、丙、丁4人任意排成一行,求甲和乙相邻的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案