分析 解法一:(1)由已知得建立方程关系,解得即可得出椭圆E的方程.
(2)设点A(x1,y1),B(x2,y2),AB中点为H(x0,y0).直线方程与椭圆方程联立化为(m2+2)y2-2my-3=0,利用根与系数的关系中点坐标公式可得:y0=$\frac{m}{{m}^{2}+2}$.|GH|2=$({x}_{0}+\frac{9}{4})^{2}+{y}_{0}^{2}$.$\frac{|AB{|}^{2}}{4}$=$\frac{({m}^{2}+1)[({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}]}{4}$,作差|GH|2-$\frac{|AB{|}^{2}}{4}$即可判断出.
解法二:(1)同解法一.
(2)设点A(x1,y1),B(x2,y2),则$\overrightarrow{GA}$=$({x}_{1}+\frac{9}{4},{y}_{1})$,$\overrightarrow{GB}$=$({x}_{2}+\frac{9}{4},{y}_{2})$.直线方程与椭圆方程联立化为(m2+2)y2-2my-3=0,计算$\overrightarrow{GA}•\overrightarrow{GB}$=$({x}_{1}+\frac{9}{4})({x}_{2}+\frac{9}{4})+{y}_{1}{y}_{2}$即可得出∠AGB,进而判断出位置关系.
解答 解:(1)∵椭圆的离心率e=$\frac{{\sqrt{2}}}{2}$,
∴$\frac{c}{a}$=$\frac{{\sqrt{2}}}{2}$,即c=$\frac{{\sqrt{2}}}{2}$a,即c2=$\frac{1}{2}$a2,
则b2=a2-c2=$\frac{1}{2}$a2,
∵椭圆E过点$(\sqrt{2},1)$,
∴$\frac{2}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1,
即$\frac{2}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=$\frac{2}{{a}^{2}}$+$\frac{2}{{a}^{2}}$=$\frac{4}{{a}^{2}}$=1,
则a2=4,b2=2,
则椭圆的标准方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1;
(2)设点A(x1y1),B(x2,y2),AB中点为H(x0,y0).
由$\left\{\begin{array}{l}{x=my-1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,化为(m2+2)y2-2my-3=0,
∴y1+y2=$\frac{2m}{{m}^{2}+2}$,y1y2=$\frac{-3}{{m}^{2}+2}$,∴y0=$\frac{m}{{m}^{2}+2}$.
G$(-\frac{9}{4},0)$,
∴|GH|2=$({x}_{0}+\frac{9}{4})^{2}+{y}_{0}^{2}$=$(m{y}_{0}+\frac{5}{4})^{2}$+${y}_{0}^{2}$=$({m}^{2}+1){y}_{0}^{2}$+$\frac{5}{2}m{y}_{0}$+$\frac{25}{16}$.
$\frac{|AB{|}^{2}}{4}$=$\frac{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}{4}$=$\frac{({m}^{2}+1)[({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}]}{4}$=$({m}^{2}+1)({y}_{0}^{2}-{y}_{1}{y}_{2})$,
故|GH|2-$\frac{|AB{|}^{2}}{4}$=$\frac{5}{2}m{y}_{0}+({m}^{2}+1){y}_{1}{y}_{2}$+$\frac{25}{16}$=$\frac{5{m}^{2}}{2({m}^{2}+2)}$-$\frac{3({m}^{2}+1)}{{m}^{2}+2}$+$\frac{25}{16}$=$\frac{17{m}^{2}+2}{16({m}^{2}+2)}$>0.
∴$|GH|>\frac{|AB|}{2}$,故G在以AB为直径的圆外.
解法二:(1)同解法一.
(2)设点A(x1y1),B(x2,y2),则$\overrightarrow{GA}$=$({x}_{1}+\frac{9}{4},{y}_{1})$,$\overrightarrow{GB}$=$({x}_{2}+\frac{9}{4},{y}_{2})$.
由$\left\{\begin{array}{l}{x=my-1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,化为(m2+2)y2-2my-3=0,
∴y1+y2=$\frac{2m}{{m}^{2}+2}$,y1y2=$\frac{-3}{{m}^{2}+2}$,
从而$\overrightarrow{GA}•\overrightarrow{GB}$=$({x}_{1}+\frac{9}{4})({x}_{2}+\frac{9}{4})+{y}_{1}{y}_{2}$
=$(m{y}_{1}+\frac{5}{4})(m{y}_{2}+\frac{5}{4})$+y1y2
=$({m}^{2}+1){y}_{1}{y}_{2}+\frac{5}{4}m({y}_{1}+{y}_{2})$+$\frac{25}{16}$
=$\frac{5{m}^{2}}{2({m}^{2}+2)}$-$\frac{3({m}^{2}+1)}{{m}^{2}+2}$+$\frac{25}{16}$=$\frac{17{m}^{2}+2}{16({m}^{2}+2)}$>0.
∴$\overrightarrow{GA}•\overrightarrow{GB}$>0,又$\overrightarrow{GA}$,$\overrightarrow{GB}$不共线,
∴∠AGB为锐角.
故点G$(-\frac{9}{4},0)$在以AB为直径的圆外.
点评 本小题主要考查椭圆、圆、直线与椭圆的位置关系、点与圆的位置关系、向量数量积运算性质等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y平均增加1.5个单位 | B. | y平均增加2个单位 | ||
C. | y平均减少1.5个单位 | D. | y平均减少2个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{3}{2}$ | B. | $-\frac{2}{3}$ | C. | 6 | D. | -6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要条件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com