精英家教网 > 高中数学 > 题目详情
设数列{an}是公差为d的等差数列,其前n项和为Sn
(1)已知a1=1,d=2,
(i)求当n∈N*时,的最小值;
(ii)当n∈N*时,求证:
(2)是否存在实数a1,使得对任意正整数n,关于m的不等式am≥n的最小正整数解为3n﹣2?若存在,则求a1的取值范围;若不存在,则说明理由.
解:(1)(i)解:∵a1=1,d=2,


当且仅当,即n=8时,上式取等号.
的最小值是16.
(ii)证明:由(i)知Sn=n2
当n∈N*时,

=
=


(2)假设对n∈N*,关于m的不等式
am=a1+(m﹣1)d≥n的最小正整数解为cn=3n﹣2,
当n=1时,a1+(c1﹣1)d=a1≥1;
当n≥2时,恒有


从而
时,对n∈N*,且n≥2时,
当正整数m<cn时,有
a1符合题意且a1的取值范围是
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}是公差不为0的等差数列,Sn为前n项和,满足a3,2a5,a12成等差数列,S10=60.
(1)求数列{an}的通项公式及前n项和Sn
(2)试求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是公差不为0的等差数列,a1=1且a1,a3,a6成等比数列,则{an}的前n项和Sn等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)设数列{an}是公差不为0的等差数列,a1=1且a1,a3,a6成等比数列,则数列{an}的前n项和Sn=
1
8
n2+
7
8
n
1
8
n2+
7
8
n

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)设数列{an}是公差不为0的等差数列,Sn为其前n项和,若
a
2
1
+
a
2
2
=
a
2
3
+
a
2
4
,S5=5,则a7的值为
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是公差不为0的等差数列,Sn为前n项和,满足a3,2a5,a12 成等差数列,S10=60.
(1)求数列{an}的通项公式及前n项和Sn
(2)试求所有正整数m,使
am+12+2am
为数列{an}中的项.

查看答案和解析>>

同步练习册答案