精英家教网 > 高中数学 > 题目详情
设命题p:?x>0,2x>log2x,则?p为(  )
A、?x>0,2x<log2x
B、?x>0,2x≤log2x
C、?x>0,2x<log2x
D、?x>0,2x≥log2x
考点:命题的否定
专题:简易逻辑
分析:直接利用全称命题的否定是特称命题写出结果即可.
解答: 解:因为全称命题的否定是特称命题,所以命题p:?x>0,2x>log2x,则?p为?x>0,2x≤log2x.
故选:B.
点评:本题考查命题的否定同学明天与全称命题的否定关系,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x1,x2是函数f(x)=x2+mx-2(m∈R)的两个零点,且x1<x2,则x2-x1的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面区域Ω={(x,y)|
y≥0
y≤
4-x2
,直线y=mx+2m和曲线y=
4-x2
有两个不同的交点,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为P(M),若0≤m≤1,则P(M)的取值范围为(  )
A、(0,
π-2
]
B、(0,
π+2
]
C、[
π+2
,1]
D、[
π-2
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C的中心在原点,它的一条渐近线的方程为2x-y=0,且该双曲线经过点P(2,4
2

(1)求双曲线C的方程及其离心率;
(2)直线l:y=kx+m(k>0)与双曲线C交于A(xA,yA),B(xB,yB)两点,其中0<yB<yA,直线l与y轴的交点为M,且
AM
=2
MB
.试求满足上述条件的k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数:
2+i
1-2i
=(  )
A、-i
B、i
C、2
2
-i
D、-2
2
+i

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足不等式组
x+y≥1
x-2y≥-2
3x-2y≤3
,若x2+y2≥a恒成立,则实数a的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别为a,b,c.且a=2
3
,b=2,A=
π
3

(1)求角B的大小;
(2)如果函数f(x)=sinx-sin(x+2B),求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asinx+bcosx,其中a∈Z,b∈Z.设集合A={x|f(x)=0},B={x|f(f(x))=0},且A=B.
(Ⅰ)证明:b=0;
(Ⅱ)求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

θ∈(-
π
2
π
2
 )
,且tanθ>1,则θ的取值范围是
 

查看答案和解析>>

同步练习册答案