A. | 2 | B. | 4$\sqrt{2}$ | C. | 2$\sqrt{10}$ | D. | 6 |
分析 求出圆的标准方程可得圆心和半径,由直线l:x+ay-1=0经过圆C的圆心(2,1),求得a的值,可得点A的坐标,再利用直线和圆相切的性质求得|AB|的值.
解答 解:∵圆C:x2+y2-4x-2y+1=0,即(x-2)2+(y-1)2 =4,
表示以C(2,1)为圆心、半径等于2的圆.
由题意可得,直线l:x+ay-1=0经过圆C的圆心(2,1),
故有2+a-1=0,∴a=-1,点A(-4,-1).
∵AC=$\sqrt{(-4-2)^{2}+(-1-1)^{2}}$=2$\sqrt{10}$,CB=R=2,
∴切线的长|AB|=$\sqrt{40-4}$=6.
故选:D.
点评 本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | ω=1 | B. | ω=2 | C. | ω=$\frac{1}{2}$ | D. | ω=$\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $(\frac{1}{4},1)$ | B. | (1,4) | C. | (1,8) | D. | (8,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1≤ω≤$\frac{3}{2}$ | B. | $\frac{3}{2}$<ω≤3 | C. | 3≤ω<4 | D. | $\frac{3}{2}$≤ω<$\frac{9}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com