精英家教网 > 高中数学 > 题目详情
精英家教网已知圆C:(x-3)2+(y-4)2=4,
(Ⅰ)若直线l1过定点A(1,0),且与圆C相切,求l1的方程;
(Ⅱ)若圆D的半径为3,圆心在直线l2:x+y-2=0上,且与圆C外切,求圆D的方程.
分析:(I)由直线l1过定点A(1,0),故可以设出直线的点斜式方程,然后根据直线与圆相切,圆心到直线的距离等于半径,求出k值即可,但要注意先讨论斜率不存在的情况,以免漏解.
(II)圆D的半径为3,圆心在直线l2:x+y-2=0上,且与圆C外切,则设圆心D(a,2-a),进而根据两圆外切,则圆心距等于半径和,构造出关于a的方程,解方程即可得到答案.
解答:解:(Ⅰ)①若直线l1的斜率不存在,即直线是x=1,符合题意.(1分)
②若直线l1斜率存在,设直线l1为y=k(x-1),即kx-y-k=0.
由题意知,圆心(3,4)到已知直线l1的距离等于半径2,
|3k-4-k|
k2+1
=2
(4分)
解之得k=
3
4

所求直线方程是x=1,3x-4y-3=0.(5分)
(Ⅱ)依题意设D(a,2-a),又已知圆的圆心C(3,4),r=2,
由两圆外切,可知CD=5
∴可知
(a-3)2+(2-a-4)2
=5,(7分)
解得a=3,或a=-2,
∴D(3,-1)或D(-2,4),
∴所求圆的方程为(x-3)2+(y+1)2=9或(x+2)2+(y-4)2=9.(9分)
点评:本题考查的知识点是圆的方程,直线与圆的位置关系及圆与圆的位置关系,其中(1)的关键是根据直线与圆相切,则圆心到直线的距离等于半径,构造出关于k的方程,(2)的关键是根据两圆外切,则圆心距等于半径和,构造出关于a的方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).
(Ⅰ)若l1与圆相切,求l1的方程;
(Ⅱ)若l1与圆相交于P,Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,求证:AM•AN为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-3)2+(y-4)2=4,
(1)直线l1过定点A (1,0).若l1与圆C相切,求l1的方程;
(2)直线l2过B(2,3)与圆C相交于P,Q两点,求线段PQ的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-3)2+(y-4)2=4,
(Ⅰ)若a=y-x,求a的最大值和最小值;
(Ⅱ)若圆D的半径为3,圆心在直线L:x+y-2=0上,且与圆C外切,求圆D的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x+3)2+(y-4)2=4.
(1)若直线l1过点A(-1,0),且与圆C相切,求直线l1的方程;
(2)若圆D的半径为4,圆心D在直线l2:2x+y-2=0上,且与圆C内切,求圆D的方程.

查看答案和解析>>

同步练习册答案