分析 由已知和余弦定理可得3b2=(2+$\sqrt{3}$)ac,再由面积公式可得ac=2,代入解关于b的方程可得.
解答 解:由余弦定理可得b2=a2+c2-2accosB,
整理可得b2=(a+c)2-(2+$\sqrt{3}$)ac=4b2-(2+$\sqrt{3}$)ac,
∴3b2=(2+$\sqrt{3}$)ac,
又△ABC的面积S=$\frac{1}{2}$acsinB=$\frac{1}{4}$ac=$\frac{1}{2}$,∴ac=2
代入数据3b2=(2+$\sqrt{3}$)ac可得3b2=2(2+$\sqrt{3}$),
解得b=$\frac{3+\sqrt{3}}{3}$
故答案为:$\frac{3+\sqrt{3}}{3}$
点评 本题考查解三角形,涉及余弦定理和三角形的面积公式,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 8 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com