精英家教网 > 高中数学 > 题目详情
19.设正项等差数列{an}的前n项和为Sn,其中a1≠a2.am、ak、an是数列{an}中满足an-ak=ak-am的任意项.
(1)求证:m+n=2k;
(2)若$\sqrt{{S}_{m}}$,$\sqrt{{S}_{k}}$,$\sqrt{{S}_{n}}$也成等差数列,且a1=1,求数列{an}的通项公式;
(3)求证:$\frac{1}{{S}_{m}}$+$\frac{1}{{S}_{n}}$≥$\frac{2}{{S}_{k}}$.

分析 (1)设等差数列{an}的公差为d,因为a1≠a2,所以d≠0,运用等差数列的通项公式即可得证;
(2)由题意可取m=1,k=2,n=3,即2$\sqrt{{S}_{2}}$=$\sqrt{{S}_{1}}$+$\sqrt{{S}_{3}}$,解得d=2,求得通项和前n项和,检验即可得到所求通项;
(3)运用等差数列的求和公式和基本不等式,即可得证.

解答 解:(1)证明:设等差数列{an}的公差为d,
因为a1≠a2,所以d≠0,
又an-ak=ak-am,即有(n-k)d=(k-m)d,
所以n-k=k-m,即m+n=2k;              
(2)由已知取m=1,k=2,n=3,即2$\sqrt{{S}_{2}}$=$\sqrt{{S}_{1}}$+$\sqrt{{S}_{3}}$      
把a1=1代入解得d=2,
又an=2n-1时,Sn=n2,即$\sqrt{{S}_{n}}$=n,
则当m+n=2k时,$\sqrt{{S}_{m}}$,$\sqrt{{S}_{k}}$,$\sqrt{{S}_{n}}$成等差数列,
即有an=2n-1;                                          
(3)证明:由条件得Sm,Sk,Sn都大于0,
即有Sm•Sn=[ma1+$\frac{m(m-1)d}{2}$]•[na1+$\frac{n(n-1)d}{2}$]=mn[a1+$\frac{(m-1)d}{2}$][a1+$\frac{(n-1)d}{2}$]
≤($\frac{m+n}{2}$)2•[$\frac{{a}_{1}+\frac{(m-1)}{2}d+{a}_{1}+\frac{(n-1)d}{2}}{2}$]2=k2•[a1+$\frac{(k-1)d}{2}$]2=Sk2
则$\frac{1}{{S}_{m}}$+$\frac{1}{{S}_{n}}$≥2$\sqrt{\frac{1}{{S}_{m}{S}_{n}}}$≥$\frac{2}{{S}_{k}}$,
即$\frac{1}{{S}_{m}}$+$\frac{1}{{S}_{n}}$≥$\frac{2}{{S}_{k}}$.

点评 本题考查等差数列的通项公式和求和公式的运用,考查数列不等式的证明,注意运用均值不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知命题p:|1-$\frac{x-1}{3}$|≤2,命题q:x2-2x+(1-m)(1+m)≤0(m>0),若¬p是¬q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)已知tanα=2,求$\frac{3sinα-2cosα}{sinα+cosα}$的值.
(2)已知$sinα+cosα=\sqrt{2}$,求$tanα+\frac{1}{tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过点(1,2)且与圆x2+y2=5相切的直线的方程是x+2y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出下列四个命题:
①若命题p:?x0∈R,x02+x0+1<0,则?p:?x∈R,x2+x+1≥0;
②“a>b”是“ac2>bc2”的必要条件;
③命题“若m>0,则方程x2+x-m=0有实数根”的逆否命题为:“若方程x2+x-m=0没有实数根,则m≤0”;
④已知命题p和q,若p∨q为假命题,则命题p与q中必一真一假.
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为$y=\frac{1}{2}{x^2}-200x+45000$,且每处理一吨二氧化碳得到可利用的化工产品价值为200元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}的前n项和Sn=2an-2n+1,若不等式(-1)nλ<$\frac{{S}_{n}}{{S}_{n+1}}$,对?n∈N*恒成立,则实数λ的取值范围(-$\frac{1}{4}$,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,an≠0,a1=1.且an•an+1=2(an-an+1
(1)求数列{an}的通项an
(2)证明:对一切正整数n,有a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$…+$\frac{{a}_{n}}{n}$<2成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知全集U={l,2,3,4,5,6},集合A={l,2,4,6},集合B={l,3,5},则A∪∁UB(  )
A.{l,2,3,4,5,6}B.{1,2,4,6}C.{2,4,6}D.{2,3,4,5,6}

查看答案和解析>>

同步练习册答案