¾«Ó¢¼Ò½ÌÍø½«ÊýÁÐ{an}ÖеÄËùÓÐÏî°´µÚÒ»ÐÐÅÅ3ÏÒÔÏÂÿһÐбÈÉÏÒ»ÐжàÒ»ÏîµÄ¹æÔòÅųÉÈçÏÂÊý±í£º
¼Ç±íÖеĵÚÒ»ÁÐÊýa1£¬a4£¬a8£¬¡­£¬¹¹³ÉÊýÁÐ{bn}£®
£¨¢ñ£©Éèb8=am£¬ÇómµÄÖµ£»
£¨¢ò£©Èôb1=1£¬¶ÔÓÚÈκÎn¡ÊN*£¬¶¼ÓÐbn£¾0£¬ÇÒ£¨n+1£©bn+12-nbn2+bn+1bn=0£®ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨¢ó£©¶ÔÓÚ£¨¢ò£©ÖеÄÊýÁÐ{bn}£¬ÈôÉϱíÖÐÿһÐеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¾ù¹¹³É¹«±ÈΪq£¨q£¾0£©µÄµÈ±ÈÊýÁУ¬ÇÒa66=
25
£¬ÇóÉϱíÖеÚk£¨k¡ÊN*£©ÐÐËùÓÐÏîµÄºÍs£¨k£©£®
·ÖÎö£º£¨¢ñ£©ÓÉÌâÉèÌõ¼þ¿ÉÒÔÖªµÀ£¬m=3+4+5+6+7+8+9+1=43£®
£¨¢ò£©¸ù¾ÝÌâÒâÖª
bn+1
bn
=
n
n+1
£¬Òò´Ë
b2
b1
=
1
2
£¬
b3
b2
=
2
3
£¬¡­£¬
bn
bn-1
=
n-1
n
£¬½«¸÷ʽÏà³ËµÃbn=
1
n
£®
£¨¢ó£©ÉèÉϱíÖÐÿÐеĹ«±È¶¼Îªq£¬±íÖеÚ1ÐÐÖÁµÚ9Ðй²º¬ÓÐÊýÁÐbnµÄÇ°63Ï¹Êa66ÔÚ±íÖеÚ10ÐеÚÈýÁУ®ÓÉ´Ë¿ÉÇó³öÉϱíÖеÚk£¨k¡ÊN*£©ÐÐËùÓÐÏîµÄºÍs£¨k£©£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâÒ⣬m=3+4+5+6+7+8+9+1=43£¬£¨4·Ö£©
£¨¢ò£©ÓÉ£¨n+1£©bn+12-nbn2+bn+1bn=0£¬bn£¾0£¬
Áît=
bn+1
bn
µÃt£¾0£¬ÇÒ£¨n+1£©t2+t-n=0£¨6·Ö£©
¼´£¨t+1£©[£¨n+1£©t-n]=0£¬
ËùÒÔ
bn+1
bn
=
n
n+1
£¨8·Ö£©
Òò´Ë
b2
b1
=
1
2
£¬
b3
b2
=
2
3
£¬¡­£¬
bn
bn-1
=
n-1
n

½«¸÷ʽÏà³ËµÃbn=
1
n
£¨10·Ö£©
£¨¢ó£©ÉèÉϱíÖÐÿÐеĹ«±È¶¼Îªq£¬ÇÒq£¾0£®
ÒòΪ3+4+5+¡­+11=63£¬£¨12·Ö£©
ËùÒÔ±íÖеÚ1ÐÐÖÁµÚ9Ðй²º¬ÓÐÊýÁÐbnµÄÇ°63Ï
¹Êa66ÔÚ±íÖеÚ10ÐеÚÈýÁУ¬£¨14·Ö£©
Òò´Ëa66=b10q2=
2
5
£®ÓÖb10=
1
10
£¬ËùÒÔq=2£®ÔòS(k)=
bk(1-qk+2)
1-q
=
1
k
(2k+2-1)
£®k¡ÊN*£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍø½«ÊýÁÐ{an}ÖеÄËùÓÐÏÿһÐбÈÉÏÒ»ÐжàÒ»ÏîµÄ¹æÔòÅųÉÈçÏÂ±í£º
¼Ç±íÖеĵÚÒ»ÁÐÊýa1£¬a2£¬a4£¬a7£¬¡­£¬¹¹³ÉµÄÊýÁÐΪ{bn}£¬b1=a1=1£¬SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇÒÂú×ã
2bn
bnSn-
S
2
n
=1(n¡Ý2)
£®
£¨1£©ÇóÖ¤ÊýÁÐ{
1
Sn
}
³ÉµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©ÉϱíÖУ¬Èôa81ÏîËùÔÚÐеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¹¹³ÉµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈqΪÕýÊý£¬Çóµ±a81=-
4
91
ʱ£¬¹«±ÈqµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÕûÊýÊýÁÐ{an}Âú×㣺a1=1£¬a2=2£¬ÇÒ2an-1£¼an-1+an+1£¼2an+1£¨n¡ÊN£¬n¡Ý2£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©½«ÊýÁÐ{an}ÖеÄËùÓÐÏîÒÀ´Î°´ÈçͼËùʾµÄ¹æÂÉÑ­»·µØÅųÉÈçÏÂÈý½ÇÐÎÊý±í£º
¾«Ó¢¼Ò½ÌÍø
¡­
ÒÀ´Î¼ÆËã¸÷¸öÈý½ÇÐÎÊý±íÄÚ¸÷ÐÐÖеĸ÷ÊýÖ®ºÍ£¬ÉèÓÉÕâЩºÍ°´Ô­À´ÐеÄÇ°ºó˳Ðò¹¹³ÉµÄÊýÁÐΪ{bn}£¬Çób5+b100µÄÖµ£»
£¨3£©Áîcn=2+ban+b•2an-1£¨bΪ´óÓÚµÈÓÚ3µÄÕýÕûÊý£©£¬ÎÊÊýÁÐ{cn}ÖÐÊÇ·ñ´æÔÚÁ¬ÐøÈýÏî³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓгɵȱÈÊýÁеÄÁ¬ÐøÈýÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½«ÊýÁÐ{an}ÖеÄËùÓÐÏÿһÐбÈÉÏÒ»ÐжàÒ»ÏîµÄ¹æÔòÅųÉÈçÏÂÊý±í£®¼Ç±íÖеÚÒ»ÁÐÊýa1£¬a2£¬a4£¬a7£¬¡­¹¹³ÉµÄÊýÁÐΪ{bn}£¬b1=a1=1£®SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇÒÂú×ã2bn=bnSn-Sn2£¨n¡Ý2£¬n¡ÊN*£©£®
£¨1£©Ö¤Ã÷ÊýÁÐ{
1
Sn
}ÊǵȲîÊýÁУ¬²¢ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©Í¼ÖУ¬Èô´ÓµÚÈýÐÐÆð£¬Ã¿Ò»ÐÐÖеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¹¹³ÉµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈΪͬһ¸öÕýÊý£®µ±a81=-
4
91
ʱ£¬ÇóÉϱíÖеÚk£¨k¡Ý3£©ÐÐËùÓÐÊýµÄºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

½«ÊýÁÐ{an}ÖеÄËùÓÐÏÿһÐбÈÉÏÒ»ÐжàÒ»ÏîµÄ¹æÔòÅųÉÈçÏÂ±í£º
¼Ç±íÖеĵÚÒ»ÁÐÊýa1£¬a2£¬a4£¬a7£¬¡­£¬¹¹³ÉµÄÊýÁÐΪ{bn}£¬b1=a1=1£¬SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇÒÂú×ãÊýѧ¹«Ê½£®
£¨1£©ÇóÖ¤ÊýÁÐÊýѧ¹«Ê½³ÉµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©ÉϱíÖУ¬Èôa81ÏîËùÔÚÐеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¹¹³ÉµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈqΪÕýÊý£¬Çóµ±Êýѧ¹«Ê½Ê±£¬¹«±ÈqµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011Äê½­ËÕÊ¡»´°²ÊкéÔóÖÐѧ¸ß¿¼ÊýѧģÄâÊÔ¾í£¨3£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÕûÊýÊýÁÐ{an}Âú×㣺a1=1£¬a2=2£¬ÇÒ2an-1£¼an-1+an+1£¼2an+1£¨n¡ÊN£¬n¡Ý2£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©½«ÊýÁÐ{an}ÖеÄËùÓÐÏîÒÀ´Î°´ÈçͼËùʾµÄ¹æÂÉÑ­»·µØÅųÉÈçÏÂÈý½ÇÐÎÊý±í£º

¡­
ÒÀ´Î¼ÆËã¸÷¸öÈý½ÇÐÎÊý±íÄÚ¸÷ÐÐÖеĸ÷ÊýÖ®ºÍ£¬ÉèÓÉÕâЩºÍ°´Ô­À´ÐеÄÇ°ºó˳Ðò¹¹³ÉµÄÊýÁÐΪ{bn}£¬Çób5+b100µÄÖµ£»
£¨3£©ÁbΪ´óÓÚµÈÓÚ3µÄÕýÕûÊý£©£¬ÎÊÊýÁÐ{cn}ÖÐÊÇ·ñ´æÔÚÁ¬ÐøÈýÏî³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓгɵȱÈÊýÁеÄÁ¬ÐøÈýÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸