精英家教网 > 高中数学 > 题目详情

【题目】某市高中某学科竞赛中,某区名考生的参赛成绩的频率分布直方图如图所示.

1)求这名考生的平均成绩(同一组中数据用该组区间中点值作代表);

2)记分以上为合格,分及以下为不合格,结合频率分布直方图完成下表,能否在犯错误概率不超过的前提下认为该学科竞赛成绩与性别有关?

不合格

合格

合计

男生

女生

合计

附:

.

【答案】1;(2)填表见解析,能在犯错误概率不超过的前提下认为该学科竞赛成绩与性别有关.

【解析】

1)将每个矩形底边中点值乘以相应矩形的面积,相加即可得出这名考生的平均成绩

2)根据题中信息完善列联表,并计算出的观测值,利用临界值表可对题中结论进行判断.

1)由题意,得:

中间值

概率

(分),

名考生的平均成绩分;

2列联表如下:

不合格

合格

合计

男生

女生

合计

故能在犯错误概率不超过的前提下认为该学科竞赛成绩与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧棱底面,外接球的球心为,点是侧棱上的一个动点.有下列判断:①直线与直线是异面直线;②一定不垂直于 ③三棱锥的体积为定值;④的最小值为.其中正确的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,的中点,将沿折起得到图(二),点为棱上的动点.

(1)求证:平面平面

(2)若,二面角,点中点,求二面角余弦值的平方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 山东省《体育高考方案》于20122月份公布,方案要求以学校为单位进行体育测试,某校对高三1班同学按照高考测试项目按百分制进行了预备测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段的人数为2.

)请估计一下这组数据的平均数M

)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、、第五组)中任意选出两人,形成一个小组.若选出的两人成绩差大于20,则称这两人为帮扶组,试求选出的两人为帮扶组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(数学文卷·2017届重庆十一中高三12月月考第16题) 现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为 ,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在15岁到65岁的人群中随机调查了100人,并得到如图所示的频率分布直方图,在这100人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如表所示:

(1)由频率分布直方图,估计这100人年龄的平均数;

(2)根据以上统计数据填写下面的22列联表,据此表,能否在犯错误的概率不超过5%的前提下,认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?

45岁以下

45岁以上

总计

不支持

支持

总计

参考数据:

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在点处的切线与直线平行.

(Ⅰ)求实数的值;

(Ⅱ)设

i)若函数上恒成立,求的最大值;

ii)当时,判断函数有几个零点,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是平面内共始点的三个非零向量,且两两不共线,有下列命题:

1)关于的方程可能有两个不同的实数解;

2)关于的方程至少有一个实数解;

3)关于的方程最多有一个实数解;

4)关于的方程若有实数解,则三个向量的终点不可能共线;

上述命题正确的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数),.

(1)当时,求函数的极小值;

(2)若当时,关于的方程有且只有一个实数解,求的取值范围.

查看答案和解析>>

同步练习册答案