精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)是偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立.当x1、x2∈[0,3],且x1≠x2时,都有>0,给出下列命题:
①f(3)=0;
②直线x=-6是函数y=f(x)的图象的一条对称轴;
③函数y=f(x)在[-9,-6]上为单调增函数;
④函数y=f(x)在[-9,9]上有4个零点.
其中正确的命题是________.(填序号)
①②④
令x=-3,得f(-3)=0,由y=f(x)是偶函数,所以f(3)=f(-3)=0,①正确;因为f(x+6)=f(x),所以y=f(x)是周期为6的函数,而偶函数图象关于y轴对称,所以直线x=-6是函数y=f(x)的图象的一条对称轴,②正确;由题意知,y=f(x)在[0,3]上为单调增函数,所以在[-3,0]上为单调减函数,故y=f(x)在[-9,-6]上为单调减函数,③错误;由f(3)=f(-3)=0,知f(-9)=f(9)=0,所以函数y=f(x)在[-9,9]上有个零点,④正确.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求函数的最小正周期和值域;
(2)若,且,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间.
(2)若方程有4个不同的实根,求的范围?
(3)是否存在正数,使得关于的方程有两个不相等的实根?如果存在,求b满足的条件,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的定义域为,且,
,时恒成立.
(1)判断上的单调性;
(2)解不等式
(3)若对于所有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数定义在(―1,1)上,对于任意的,有,且当时,
(1)验证函数是否满足这些条件;
(2)判断这样的函数是否具有奇偶性和单调性,并加以证明;
(3)若,求方程的解。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知9x-10×3x+9≤0,求函数y=-4+2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数y=ax与y=-在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是(  )
A.增函数B.减函数C.先增后减D.先减后增

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数y=f(x)是定义在[-2,2]上的单调减函数,且f(a+1)<f(2a),则实数a的取值范围是________.

查看答案和解析>>

同步练习册答案