精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)a (aR).

(1) 判断函数f(x)的单调性并给出证明;

(2) 若存在实数a使函数f(x)是奇函数,求a

(3)对于(2)中的a,若f(x),当x[2,3]时恒成立,求m的最大值.

【答案】(1)见解析;(2)a=1;(3).

【解析】试题分析:(1)设x1x2∈R,且x1<x2,由定义法能推出f(x1)-f(x2)<0,从而得到f(x)在定义域上单调递增;

(2)由奇函数定义得f(0)=0,求参检验即可;

(3)由条件可得: m≤2x (1=(2x+1)+-3恒成立.m≤(2x+1)+-3的最小值,x∈[2,3]即可得解.

试题解析:

(1)不论a为何实数,f(x)在定义域上单调递增.

证明:设x1x2∈R,且x1<x2

f(x1)-f(x2)=.

x1<x2可知0<2x1<2x2

所以2x1-2x2<0,2x1+1>0,2x2+1>0,

所以f(x1)-f(x2)<0,f(x1)<f(x2).

所以由定义可知,不论a为何数,f(x)在定义域上单调递增.

(2)由f(0)=a-1=0得a=1,经验证,当a=1时,f(x)是奇函数.

(3)由条件可得: m≤2x=(2x+1)+-3恒成立.m≤(2x+1)+-3的最小值,x∈[2,3].

t=2x+1,则t∈[5,9],函数g(t)=t-3在[5,9]上单调递增,

所以g(t)的最小值是g(5)=

所以m,即m的最大值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】.已知函数f(x)=x2-2x-3,若x∈[t,t+2]时,求函数f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的, 的中点.

)设上的一点,且,求的大小;

)当时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列满足的前项和.证明:对任意

(1)当时,

(2)当时,

(3)当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形中, ,将沿折起,使得平面平面,如图.

(1)求证:

(2)若中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,离心率为.设过点的直线与椭圆相交于不同两点 周长为.

)求椭圆C的标准方程;

(Ⅱ)已知点,证明:当直线变化时,总有TA与的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求过点且与曲线相切的直线方程;

(Ⅱ)设,其中为非零实数,若有两个极值点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣9≤0,x∈R,m∈R}.

(1)若A∩B=[1,3],求实数m的值;

(2)若p是q的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱底面直角梯形,是棱上一点,.

(1)求异面直线所成的角;

(2)求证:平面.

查看答案和解析>>

同步练习册答案