本题满分12分)
设f(x) 是定义在R上的减函数,满足f(x+y)=f(x)•f(y)且f(0)=1,数列{an}
满足a1=4,f(log3f(-1-log3=1 (n∈N*);
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Sn是数列{an}的前n项和, 试比较Sn与6n2-2的大小。
(Ⅰ)由题设知f(log3∙f(-1-log3=1 (n∈N*)可化为
,∵y=f(x)是定义在R上的单调减函数,
∴即
∴数列是以为首项,1为公差的等差数列。∴log3即an=.--------------------------------------------------6分
(Ⅱ)Sn=a1+a2+a3+···+an =4(1+31+32+···+3n-1)=2(3n-1)
当n=1时有Sn=6n2-2=4; 当n=2时有Sn=16<6n2-2=22; 当n=3时有Sn=6n2-2=52;
当n=4时有Sn=160>6n2-2=94; 当n=5时有Sn=484>6n2-2=148.
由此猜想当n≥4时, 有Sn>6n2-23n-1>n2.下面用数学归纳法证明:
①当n=1时显然成立;
②假设当n=k(k≥4,k∈N*)时, 有3k-1>k2; 当n=k+1时,有3k=3·3k-1>3k2,
∵k≥4∴k(k-1)≥12, ∴3k2-(k-1)2=2k(k-1)-1>0即3k2>(k+1)2, ∴3k>3k2>(k+1)2, ∴3k>(k+1)2,因此当n=k+1时原式成立.
由①②可知当n≥4时有3n-1>n2即Sn>6n2-2.
综上可知当n=1,3时,有Sn=6n2-2;当n=2时,有Sn<6n2-2;当n≥4时,有Sn>6n2-2。………………12分
科目:高中数学 来源:2014届吉林省吉林市高二上学期期中理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设命题:实数满足, 命题:实数满足.
当为真,求实数的取值范围;
查看答案和解析>>
科目:高中数学 来源:2012-2013学年河北省石家庄市高三暑期第二次考试理科数学试卷(解析版) 题型:解答题
(本题满分12分)设函数.
(1)求函数的单调区间;
(2)若对恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年湖北省高三十一月份阶段性考试理科数学 题型:解答题
(本题满分12分)设函数,其中。
(Ⅰ)当时,求不等式的解集;
(Ⅱ)若不等式的解集为 ,求a的值。
查看答案和解析>>
科目:高中数学 来源:2010-2011年云南省高二上学期期末数学理卷 题型:解答题
(本题满分12分)
设,分别是椭圆:的左、右焦点,过斜率为1的直线与相交于、两点,且,,成等差数列,
(Ⅰ)求的离心率;
(Ⅱ)设点满足,求的方程。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com