精英家教网 > 高中数学 > 题目详情
(1)解不等式:
x-1
x-2
1
2

(2)a>0,b>0,a≠b,试比较
b
a
+
a
b
a
+
b
的大小.
分析:(1)把原不等式化为
x
2(x-2)
>0
?x(x-2)>0,注意不要去分母,避免讨论;
(2)利用作差法比较即可.
解答:解:(1)原不等式等价于
x-1
x-2
-
1
2
>0
,即
x
2(x-2)
>0

∴x(x-2)>0,解得x>2或x<0;
因此解集为{x|x>2,x<0}
(2)
b
a
+
a
b
-
a
-
b
=
b-a
a
+
a-b
b
=(b-a)(
1
a
-
1
b
)=(b-a)
b
-
a
ab


=
(
b
-
a
)
2
(
b
+
a)
ab

∵a>0,b>0,a≠b,
(
b
-
a
)2>0,
b
+
a
>0,
ab
>0

b
a
+
a
b
a
+
b
点评:熟练掌握把分式不等式转化为整式不等式和利用作差法比较数的大小是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n≠0时,有
f(m)+f(n)
m+n
>0

(1)解不等式f(x+
1
2
)<f(1-x)

(2)若f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)解不等式:|x-1|+|x+1|≤4;
(2)已知a,b,c∈R+,且abc=1,求证:
1
a2
+
1
b2
+
1
c2
≥a+b+c

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
4x-1
4x+1
(1)解不等式f(x)<
1
3
;(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)定义域为(0,+∞),且对任意x>0,y>0都有f(
x
y
)=f(x)-f(y)
.当x>1时,有f(x)>0.
(1)求f(1)的值;
(2)若f(6)=1,解不等式 f(x+3)-f(
1
x
)<2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在(0,+∞)上的增函数,且f(
x
y
)=f(x)-f(y)

(1)求f(1)的值;
(2)若f(6)=1,解不等式f(x+3)+f(
1
x
)≤2

查看答案和解析>>

同步练习册答案