【题目】已知数列{an}是公比不为1的等比数列,a1=1,且a1 , a3 , a2成等差数列.
(1)求数列{an}的通项;
(2)若数列{an}的前n项和为Sn , 试求Sn的最大值.
【答案】
(1)解:设等比数列的公比为q,
∵a1,a3,a2成等差数列,
∴2a3=a1+a2,又a1=1,
∴2×1×q2=1+1×q,解得q=﹣ ,或q=1(舍).
∴ .
(2)解:由等比数列求和得,Sn= = ,
当n为奇数时, =1;
当n为偶数时, .
∴Sn的最大值为1.
【解析】(1)设等比数列的公比为q,由a1 , a3 , a2成等差数列,得2a3=a1+a2 , 由通项公式可得q的方程,从而可求q,通项an;(2)由等比数列求和公式可得Sn , 分n为奇数、偶数可得Sn的范围,从而可得结果;
【考点精析】利用数列的前n项和和等差数列的性质对题目进行判断即可得到答案,需要熟知数列{an}的前n项和sn与通项an的关系;在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列.
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=x2+bx+c(其中b,c为实常数).
(1)若b>2,且y=f(sinx)(x∈R)的最大值为5,最小值为﹣1,求函数y=f(x)的解析式;
(2)是否存在这样的函数y=f(x),使得{y|y=x2+bx+c,﹣1≤x≤0}=[﹣1,0],若存在,求出函数y=f(x)的解析式;若不存在,请说明理由.
(3)记集合A={x|f(x)=x,x∈R},B={x|f(f(x))=x,x∈R}.
①若A≠,求证:B≠;
②若A=,判断B是否也为空集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017四川宜宾二诊】如甲图所示,在矩形中, , , 是的中点,将沿折起到位置,使平面平面,得到乙图所示的四棱锥.
(Ⅰ)求证: 平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中国谜语大会》是中央电视台科教频道的一档集文化、益智、娱乐为一体的大型电视竞猜节目,目的是为弘扬中国传统文化、丰富群众文化生活.为选拔选手参加“中国谜语大会”,某地区举行了一次“谜语大赛”活动.为了了解本次竞赛选手的成绩情况,从中抽取了部分选手的分数(得分取正整数,满分为100分)作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100)的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100)的数据).
(1)求样本容量n和频率分布直方图中的x,y的值;
(2)分数在[80,90)的学生中,男生有2人,现从该组抽取三人“座谈”,求至少有两名女生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C经过点A(1,3)、B(2,2),并且直线m:3x﹣2y=0平分圆C.
(1)求圆C的方程;
(2)若过点D(0,1),且斜率为k的直线l与圆C有两个不同的交点M、N.
(Ⅰ)求实数k的取值范围;
(Ⅱ)若 =12,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,分别测出它们的高度如下(单位:cm)
甲:19 20 21 23 25 29 32 33 37 41
乙:10 24 26 30 34 37 44 46 47 48
(1)用茎叶图表示上述两组数据,并对两块地抽取树苗的高度进行比较,写出一个统计结论;
(2)苗圃基地分配这20株树苗的栽种任务,小王在苗高大于40cm的5株树苗中随机的选种2株,则小王没有选到甲苗圃树苗的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A(x1 , y1),B(x2 , y2)是函数f(x)= 的图象上的任意两点(可以重合),点M在直线x= 上,且 = .
(1)求x1+x2的值及y1+y2的值;
(2)已知S1=0,当n≥2时,Sn=f( )+f( )+f( )+…+f( ),求Sn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com