精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC(tanAtanC﹣1)=1.
(Ⅰ)求B的大小;
(Ⅱ)若 ,求△ABC的面积.

【答案】解:(Ⅰ)由2cosAcosC(tanAtanC﹣1)=1得:2cosAcosC( ﹣1)=1, ∴2(sinAsinC﹣cosAcosC)=1,即cos(A+C)=﹣
∴cosB=﹣cos(A+C)=
又0<B<π,
∴B=
(Ⅱ)由余弦定理得:cosB= =
=
又a+c= ,b=
﹣2ac﹣3=ac,即ac=
∴SABC= acsinB= × × =
【解析】(Ⅰ)已知等式括号中利用同角三角函数间基本关系切化弦,去括号后利用两角和与差的余弦函数公式化简,再由诱导公式变形求出cosB的值,即可确定出B的大小;(Ⅱ)由cosB,b的值,利用余弦定理列出关系式,再利用完全平方公式变形,将a+b以及b的值代入求出ac的值,再由cosB的值,利用三角形面积公式即可求出三角形ABC面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若执行如图的程序框图,输出S的值为4,则判断框中应填入的条件是( )

A.k<14?
B.k<15?
C.k<16?
D.k<17?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若= + ,则+的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其图象向右平移 个单位后得到的函数为奇函数,则函数y=f(x)的图象(
A.关于点( ,0)对称
B.关于直线x= 对称
C.关于点( ,0)对称
D.关于直线x= 对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】商丘市大型购物中心——万达广场将于201876日全面开业,目前正处于试营业阶段,某按摩椅经销商为调查顾客体验按摩椅的时间,随机调查了50名顾客,体验时间(单位:分钟)落在各个小组的频数分布如下表:

体验

时间

频数

(1)求这名顾客体验时间的样本平均数,中位数,众数

(2)已知体验时间为的顾客中有2名男性,体验时间为的顾客中有3名男性,为进一步了解顾客对按摩椅的评价,现随机从体验时间为的顾客中各抽一人进行采访,求恰抽到一名男性的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区﹣﹣龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自2015年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)

年龄

频数

频率

[0,10)

10

0.1

5

5

[10,20)

[20,30)

25

0.25

12

13

[30,40)

20

0.2

10

10

[40,50)

10

0.1

6

4

[50,60)

10

0.1

3

7

[60,70)

5

0.05

1

4

[70,80)

3

0.03

1

2

[80,90)

2

0.02

0

2

合计

100

1.00

45

55


(1)完成表格一中的空位①﹣④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.
(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?

50岁以上

50岁以下

合计

男生

女生

合计

P(K2k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:k2= ,其中n=a+b+c+d)
(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

附:K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是等差数列, 是等比数列,且 .

1)数列的通项公式;

2)设,求数列项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2022年北京冬季奥运会, 某校开设了冰球选修课,12名学生被分成甲、乙两组进行训练.他们的身高(单位:cm)如下图所示:

设两组队员身高平均数依次为,方差依次为,则下列关系式中完全正确的是( )

A. =, =B. <,>

C. <,=D. <,<

查看答案和解析>>

同步练习册答案