精英家教网 > 高中数学 > 题目详情
10.在三棱锥P-ABC中,AP=AC,BP=BC,E、F、M分别是PB、BC、CP的中点,求证:平面AEF⊥平面ABM.

分析 设EF与BM交于H,连接AH,由等腰三角形的三线合一,可得PC⊥MB,AM⊥PC,运用线面垂直的判定定理,可得PC⊥平面BMA,AH?平面BMA,则AH⊥PC,再由EF⊥BM,运用线面垂直和面面垂直的判定定理,即可得证.

解答 证明:设EF与BM交于H,连接AH,
由M为PC的中点,BP=BC,
可得PC⊥MB,
由E、F分别是PB、BC的中点,可得EF∥PC,
即有EF⊥BM,
由AP=AC,M为PC的中点,可得AM⊥PC,
由PC⊥BM,可得PC⊥平面BMA,
AH?平面BMA,则AH⊥PC,
即有AH⊥EF,又EF⊥BM,
则EF⊥平面ABM,EF?平面AEF,
则平面AEF⊥平面ABM.

点评 本题考查面面垂直的判定,注意运用面面垂直的判定定理,考查空间线面位置关系的转化思想,以及推理和逻辑能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数f(x)=4cos2$\frac{x}{2}$cos($\frac{π}{2}$-x)-2sinx-|ln(x+1)|的零点个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知$\overrightarrow{AA'}$=$\overrightarrow{BB'}$=$\overrightarrow{CC'}$,求证:
(1)△ABC≌△A′B′C′;
(2)$\overrightarrow{AB}$=$\overrightarrow{A'B'}$,$\overrightarrow{AC}$=$\overrightarrow{A'C'}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设a是实数,g(x)是指数函数,且g(x)的图象过点(2,4),若f(x)=a-$\frac{2}{g(x)+1}$(x∈R).
(1)试证明:对于任意的a,f(x)在R上为增函数;
(2)试确定a的值,使f(x)为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在椭圆x2+$\frac{{y}^{2}}{9}$=1上有一点P,F1、F2分别是椭圆的上、下焦点,若|PF1|=2|PF2|,则|PF2|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知2x≤256,且log2x≥$\frac{1}{2}$.
(1)求x的取值范围;
(2)求函数f(x)=log2($\frac{x}{2}$)•log2($\frac{x}{4}$)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在正方体ABCD-A1B1C1D1中,作截面EFGH(如图所示)交C1D1,A1B1,AB,CD分别于点E,F,G,H,则四边形EFGH的形状是(  )
A.平行四边形B.菱形C.矩形D.梯形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若△ABC的面积S=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{4}$,则角C的大小是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线x2=2y过抛物线的焦点F的直线l交抛物线于P,Q两点,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案