分析 ${(1-x+\frac{1}{{{x^{2017}}}})^{10}}$的展开式的通项公式:Tk+1=${∁}_{10}^{k}$$(\frac{1}{{x}^{2017}})^{10-k}(1-x)^{k}$,令10-k=0,解得k=10,T11=(1-x)10=1-10x+${∁}_{10}^{2}(-x)^{2}$+…,即可得出.
解答 解:${(1-x+\frac{1}{{{x^{2017}}}})^{10}}$的展开式的通项公式:Tk+1=${∁}_{10}^{k}$$(\frac{1}{{x}^{2017}})^{10-k}(1-x)^{k}$,
令10-k=0,解得k=10,
∴T11=(1-x)10=1-10x+${∁}_{10}^{2}(-x)^{2}$+…,
∴含x2项的系数为${∁}_{10}^{2}$=45.
故答案为:45.
点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 有极大值,无极小值 | B. | 有极小值,无极大值 | ||
C. | 既无极大值,又无极小值 | D. | 既有极大值,又有极小值 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com