精英家教网 > 高中数学 > 题目详情

已知函数,若存在使得恒成立,则称  是
一个“下界函数” .
(I)如果函数(t为实数)为的一个“下界函数”,
求t的取值范围;
(II)设函数,试问函数是否存在零点,若存在,求出零点个数;
若不存在,请说明理由.

(I)   (II)函数不存在零点

解析试题分析:(Ⅰ)恒成立,,    
,则,                
时,上是减函数,当时,
上是增函数,                                 
                        
(Ⅱ)由(I)知,①,
,               
,则,                   
时,上是减函数,时,
上是增函数,②,                                    
①②中等号取到的条件不同,
函数不存在零点. 
考点:导数在最大值、最小值问题中的应用;利用导数研究函数的极值.
点评:本题考查函数的最值的求法,利用函数的导函数求函数的最值,本题是一个综合题目,
可以作为高考卷的压轴题目,注意本题对于新定义的理解是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若函数有极值,求的值;
(2)若函数在区间上为增函数,求的取值范围;
(3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求由曲线所围成的封闭图形的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在区间上最大值是5,最小值是-11,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为常数,已知函数在区间上是增函数,在区间上是减函数.
(1)设为函数的图像上任意一点,求点到直线的距离的最小值;
(2)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数 
(1)当时,求证:
(2)在区间恒成立,求实数的范围。
(3)当时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用三段论证明函数在(-∞,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其图像在点处的切线为
(1)求、直线及两坐标轴围成的图形绕轴旋转一周所得几何体的体积;
(2)求、直线轴围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数.
(1)对于任意实数恒成立(其中表示的导函数),求的最大值;
(2)若方程上有且仅有一个实根,求的取值范围.

查看答案和解析>>

同步练习册答案