精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求的图像在处的切线方程;

2)求函数的极大值;

3)若恒成立,求实数a的取值范围.

【答案】(1).(2)-1;(3)

【解析】

1)由函数,可得,求出和切点坐标,利用点斜式即可得出切线方程.
2)由,求得,分析上单调性和零点,即可得出单调性与极值.
3)令,求出,对分类讨论,利用导数研究其单调性即可得出实数的取值范围.

解:(1)因为

所以,所以

因为经过

所以的图像在处的切线方程为

2)因为

所以

递减,

所以在,即递增;

,即递减,

所以在处,取极大值,

3)设

所以

时,恒成立,

所以递增,

所以时,

这与恒成立矛盾,舍去;

时,设

所以

所以恒成立,

所以递减,

所以恒成立,

所以成立;

时,设

得两根为,其中

所以

所以

所以递增,

所以

这与恒成立矛盾,舍去,

综上:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义域为的函数图像的两个端点为,向量图像上任意一点,其中,若不等式恒成立,则称函数上满足“范围线性近似”,其中最小正实数称为该函数的线性近似阈值.若函数定义在上,则该函数的线性近似阈值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数(其中常数)图象上的两个动点,点,若的最小值为0,则函数的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列的每相邻两项之间插入此两项的和,形成新的数列,这样的操作叫做该数列的一次拓展.如数列12,经过第1次拓展得到数列132;经过第2次拓展得到数列14352;设数列abc经过第n次拓展后所得数列的项数记为,所有项的和记为

1)求

2)若,求n的最小值;

3)是否存在实数abc,使得数列为等比数列,若存在,求abc满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某数学小组到进行社会实践调查,了解鑫鑫桶装水经营部在为如何定价发愁。进一步调研了解到如下信息:该经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表:

销售单价/元

6

7

8

9

10

11

12

日均销售量/桶

480

440

400

360

320

280

240

根据以上信息,你认为该经营部定价为多少才能获得最大利润?( )

A.每桶8.5B.每桶9.5C.每桶10.5D.每桶11.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,四边形是菱形,,且交于点上任意一点.

1)求证

2)已知二面角的余弦值为,若的中点,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数.

(1)的两个不同零点,是否存在实数,使成立?若存在,的值;若不存在,请说明理由.

(2),函数,存在个零点.

(i)的取值范围;

(ii)分别是这个零点中的最小值与最大值,的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左右焦点为为它的中心,为双曲线右支上的一点,的内切圆圆心为,且圆轴相切于点,过作直线的垂线,垂足为,若双曲线的离心率为,则( )

A.B.C.D.关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为为椭圆上一动点(异于左右顶点),面积的最大值为

(1)求椭圆的方程;

(2)若直线与椭圆相交于点两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案