【题目】设平面点集A={(x,y)|(x﹣1)2+(y﹣1)2≤1},B={(x,y)|(x+1)2+(y+1)2≤1},C={(x,y)|y﹣≥0},则(A∪B)∩C所表示的平面图形的面积是
【答案】π
【解析】解:对于集合A:{(x,y)|(x﹣1)2+(y﹣1)2≤1},
表示的是:以(1,1)为圆心,以1为半径的圆及其内部,
如右图,第一象限的圆;
对于集合B:{(x,y)|(x+1)2+(y+1)2≤1},
表示的是:以(﹣1,﹣1)为圆心,以1为半径的圆及其内部,
如右图,第三象限的圆;
而集合C:{(x,y)|y﹣≥0},
表示的就是:双曲线y=上方的部分,
右图阴影就是(A∪B)∩C所表示的平面图形,
根据图形的对称性可知:
其中,两块绿色的都为四分之一圆,两块红色的可以拼成四分之一圆,两块蓝色的也可以拼四分之一圆,
所以,全部阴影部分的面积为一个整圆的面积,其值为:π,
故答案为:π.
分别确定集合A,B,C所表示的平面区域,再画出应用的图形,根据图形的对称性并运用割补法,求阴影部分的面积.
科目:高中数学 来源: 题型:
【题目】函数f′(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x<0时,xf′(x)+f(x)>0,则使得f(x)<0成立的x的取值范围是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥中, 面, 是平行四边形, , ,点为棱的中点,点在棱上,且,平面与交于点,则异面直线与所成角的正切值为__________.
【答案】
【解析】
延长交的延长线与点Q,连接QE交PA于点K,设QA=x,
由,得,则,所以.
取的中点为M,连接EM,则,
所以,则,所以AK=.
由AD//BC,得异面直线与所成角即为,
则异面直线与所成角的正切值为.
【题型】填空题
【结束】
17
【题目】在极坐标系中,极点为,已知曲线: 与曲线: 交于不同的两点, .
(1)求的值;
(2)求过点且与直线平行的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知值域为[﹣1,+∞)的二次函数满足f(﹣1+x)=f(﹣1﹣x),且方程f(x)=0的两个实根x1 , x2满足|x1﹣x2|=2.
(1)求f(x)的表达式;
(2)函数g(x)=f(x)﹣kx在区间[﹣1,2]内的最大值为f(2),最小值为f(﹣1),求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f1(x)=;f2(x)=(x﹣1);f3(x)=loga(x+),(a>0,a≠1);f4(x)=x(),(x≠0),下面关于这四个函数奇偶性的判断正确的是( )
A.都是偶函数
B.一个奇函数,一个偶函数,两个非奇非偶函数
C.一个奇函数,两个偶函数,一个非奇非偶函数
D.一个奇函数,三个偶函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1和C2的参数方程分别是 (t是参数)和 (φ为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1的普通方程和曲线C2的极坐标方程;
(2)射线OM:θ=α与曲线C1的交点为O,P,与曲线C2的交点为O,Q,求|OP|·|OQ|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,棱AB的中点为P,若光线从点P出发,依次经三个侧面BCC1B1 , DCC1D1 , ADD1A1反射后,落到侧面ABB1A1(不包括边界),则入射光线PQ与侧面BCC1B1所成角的正切值的范围是( )
A.( , )
B.( ,4)
C.( , )
D.( , )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com