精英家教网 > 高中数学 > 题目详情

【题目】某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,作了初步处理,得到下表:

日期

3月1日

3月2日

3月3日

3月4日

3月5日

温差

10

11

13

12

9

发芽率(颗)

23

25

30

26

16

(1)从3月1日至3月5日中任选2天,记发芽的种子数分别为,求事件“均小于26”的概率;

(2)请根据3月1日至3月5日的数据,求出关于的线性回归方程,并预报3月份昼夜温差为14度时实验室每天100颗种子浸泡后的发芽(取整数值).

附:回归方程中的斜率和截距最小二乘法估计公式分别为:

【答案】(1)(2),发芽数为33.

【解析】试题分析:(1)由组合可得基本事件的总个数,找到所求事件的个数,相除即可;(2)利用给定的公式和相关数据可求得回归方程,将 代入回归方程可求发芽率,最后可得发芽数。

(1)由题意知,本题是一个等可能事件的概率,实验发生包含的事件共有种结果,

设“均小于26”为事件

满足条件的事件是事件“均小于26”的有如下3个:

∴所求概率为

(2)∵,∴

∴所求的线性回归方程是

时,

昼夜温差为14度时实验室每天100颗种子浸泡后的发芽数为33.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点P是单位圆上的动点,过点P作x轴的垂线与射线y=x(x≥0)交于点Q,与x轴交于点M.记∠MOP=α,且α∈(﹣ ).

(Ⅰ)若sinα=,求cos∠POQ;

(Ⅱ)求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知O为坐标原点,向量,点P满足

)记函数·,求函数的最小正周期;

)若OPC三点共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克),如图是测量数据的茎叶图:

规定:当产品中的此种元素含量不小于16毫克时,该产品为优等品.

(1)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望

(2)从甲厂的10件样品中有放回地逐个随机抽取3件,也从乙厂的10件样品中有放回地逐个随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)记的极小值为,求的最大值;

2)若对任意实数恒有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线y=f(x)在点(1, f(1))处的切线方程为y=e(x-1)+2.

(1)求 (2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中不正确命题的个数是

过空间任意一点有且仅有一个平面与已知平面垂直

过空间任意一条直线有且仅有一个平面与已知平面垂直

过空间任意一点有且仅有一个平面与已知的两条异面直线平行

过空间任意一点有且仅有一条直线与已知平面垂直

A.1 B.2

C.3 D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,若 ().

(1)判断的形状;

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为矩形, 平面 .

(1)求证:

(2)若直线平面,试判断直线与平面的位置关系,并说明理由;

(3)若 ,求三棱锥的体积.

查看答案和解析>>

同步练习册答案