精英家教网 > 高中数学 > 题目详情

【题目】已知向量(cosxsinx)(cosx,﹣sinx),函数

1)若x(0),求tan(x)的值;

2)若()(0),求的值.

【答案】1)-2;(2

【解析】

1)由向量(cosxsinx)(cosx,-sinx),利用数量积运算得到f(x)cos2x,根据f()1,求得cosx,得到x,然后利用两角和的正切公式求解.

2)由f(α)=-,得到cos2α=-,进而得到sin2α=-,再由sinβ,得到 cosβ 然后利用两角和的余弦公式求解.

1)因为向量(cosxsinx)(cosx,-sinx)

所以f(x)·cos2xsin2xcos2x

因为f()1

所以cosx1

cosx

又因为x(0π)

所以x

所以tan(x)tan()=-2

2)若f(α)=-,则cos2α=-,即cos2α=-

因为α()

所以2α)

所以sin2α=-=-

因为sinββ(0)

所以cosβ

所以cos(2αβ)cos2αcosβsin2αsinβ((

又因为2α)β(0)

所以2αβ2π)

所以2αβ的值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019新型冠状病毒感染的肺炎的传播有飞沫、气溶胶、接触等途径,为了有效抗击疫情,隔离性防护是一项具体有效措施.某市为有效防护疫情,宣传居民尽可能不外出,鼓励居民的生活必需品可在网上下单,商品由快递业务公司统一配送(配送费由政府补贴).快递业务主要由甲公司与乙公司两家快递公司承接:“快递员”的工资是“底薪+送件提成”.这两家公司对“快递员”的日工资方案为:甲公司规定快递员每天底薪为70元,每送件一次提成1元;乙公司规定快递员每天底薪为120元,每日前83件没有提成,超过83件部分每件提成5元,假设同一公司的快递员每天送件数相同,现从这两家公司往年忙季各随机抽取一名快递员并调取其100天的送件数,得到如下条形图:

1)求乙公司的快递员一日工资y(单位:元)与送件数n的函数关系;

2)若将频率视为概率,回答下列问题:

①记甲公司的“快递员”日工资为X(单位:元).求X的分布列和数学期望;

②小王想到这两家公司中的一家应聘“快递员”的工作,如果仅从日收入的角度考虑,请你利用所学过的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为.数列为非负的等比数列,且满足

(Ⅰ)求数列的通项公式;

(Ⅱ)若数列的前n项和为,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,是等边三角形,侧面底面,点是棱上靠近点的一个三等分点.

1)求证:∥平面

2)设点是线段(含端点)上的动点,若直线与底面所成的角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月AB两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中AB两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

支付金额

支付方式

不大于2000

大于2000

仅使用A

27

3

仅使用B

24

1

(Ⅰ)估计该校学生中上个月AB两种支付方式都使用的人数;

(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中ABCA1B1C1ABACAB3AC4B1CAC1

1)求AA1的长;

2)试判断在侧棱BB1上是否存在点P,使得直线PC与平面AA1C1C所成角和二面角B—A1C—A的大小相等,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图(如图①)、90后从事互联网行业岗位分布条形图(如图②),则下列结论中不一定正确的是( )

注:90后指1990年及以后出生,80后指1980~1989年之间出生,80前指1979年及以前出生.

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的20%

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图已知分別为的中点,将沿折起,得到四棱锥的中点.

1)证明:平面

2)当正视图方向与向量的方向相同时,的正视图为直角三角形,求此时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)讨论上的零点个数.

查看答案和解析>>

同步练习册答案