精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,若上有零点,求实数的取值范围.

【答案】(Ⅰ)见解析(Ⅱ)

【解析】试题分析:(Ⅰ) ,结合定义域讨论导数的正负求单调区间即可;

(Ⅱ)当时, 的单调递增区间是,单调递减区间是.所以上有零点的必要条件是,得,讨论时函数单调性求解参数范围即可.

试题解析:

解:(Ⅰ)函数的定义域为

.

.

时, 上恒成立,

所以的单调递减区间是,没有单调递增区间.

时, 的变化情况如下表:

所以的单调递增区间是,单调递减区间是.

时, 的变化情况如下表:

所以的单调递增区间是,单调递减区间是.

(Ⅱ)当时, 的单调递增区间是,单调递减区间是.

所以上有零点的必要条件是

,所以.

,所以.

上是减函数, 上没有零点.

上是增函数,在上是减函数,

所以上有零点等价于

,解得.

综上所述,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知O为△ABC的重心,∠BOC=90°,若4BC2=AB·AC,则A的大小为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型娱乐场有两种型号的水上摩托,管理人员为了了解水上摩托的使用及给娱乐城带来的经济收入情况,对该场所最近6年水上摩托的使用情况进行了统计,得到相关数据如表:

(1)请根据以上数据,用最小二乘法求水上摩托使用率关于年份代码的线性回归方程,并预测该娱乐场2018年水上摩托的使用率;

(2)随着生活水平的提高,外出旅游的老百姓越来越多,该娱乐场根据自身的发展需要,准备重新购进一批水上摩托,其型号主要是目前使用的Ⅰ型、Ⅱ型两种,每辆价格分别为1万元、1.2万元.根据以往经验,每辆水上摩托的使用年限不超过四年.娱乐场管理部对已经淘汰的两款水上摩托的使用情况分别抽取了50辆进行统计,使用年限如条形图所示:

已知每辆水上摩托从购入到淘汰平均年收益是0.8万元,若用频率作为概率,以每辆水上摩托纯利润(纯利润=收益-购车成本)的期望值为参考值,则该娱乐场的负责人应该选购Ⅰ型水上摩托还是Ⅱ型水上摩托?

附:回归直线方程为,其中 .参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)若函数在区间上是单调函数,试求实数的取值范围;

(2)已知函数,且,若函数在区间上恰有3个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex-ex(x∈R,且e为自然对数的底数).

(1)判断函数f(x)的单调性与奇偶性;

(2)是否存在实数t,使不等式f(xt)+f(x2t2)≥0对一切x∈R都成立?若存在,求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2xcos2x2sinx cosxxR).

(Ⅰ)求f()的值.

(Ⅱ)求f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中为自然对数的底数.

(1)若,求曲线在点处的切线斜率;

(2)证明:当时,函数有极小值,且极小值大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年4月1日,新华通讯社发布:国务院决定设立河北雄安新区.消息一出,河北省雄县、容城、安新3县及周边部分区域迅速成为海内外高度关注的焦点.

(1)为了响应国家号召,北京市某高校立即在所属的8个学院的教职员工中作了“是否愿意将学校整体搬迁至雄安新区”的问卷调查,8个学院的调查人数及统计数据如下:

调查人数()

10

20

30

40

50

60

70

80

愿意整体搬迁人数()

8

17

25

31

39

47

55

66

请根据上表提供的数据,用最小二乘法求出变量关于变量的线性回归方程保留小数点后两位有效数字);若该校共有教职员工2500人,请预测该校愿意将学校整体搬迁至雄安新区的人数;

(2)若该校的8位院长中有5位院长愿意将学校整体搬迁至雄安新区,现该校拟在这8位院长中随机选取4位院长组成考察团赴雄安新区进行实地考察,记为考察团中愿意将学校整体搬迁至雄安新区的院长人数,求的分布列及数学期望.

参考公式及数据: .

查看答案和解析>>

同步练习册答案