精英家教网 > 高中数学 > 题目详情
在正方形SG1G2G3中,E、F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE、SF及EF把这个正方形折成一个四面体,使G1、G2、G3三点重合,重合后的点记为G,那么,在四面体S-EFG中必有(  )
A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面
C.GF⊥△SEF所在平面D.GD⊥△SEF所在平面

∵在折叠过程中,
始终有SG1⊥G1E,SG3⊥G3F,
即SG⊥GE,SG⊥GF,
所以SG⊥平面EFG.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知矩形ABCD,AB=1,BC=
2
.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中(  )
A.存在某个位置,使得直线AC与直线BD垂直
B.存在某个位置,使得直线AB与直线CD垂直
C.存在某个位置,使得直线AD与直线BC垂直
D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCD-A1B1C1D1棱长为1,点M∈AB1,N∈BC1,且AM=BN≠
2
,有以下四个结论:
①AA1⊥MN,②A1C1MN;③MN平面A1B1C1D1;④MN与A1C1是异面直线.其中正确结论的序号是______(注:把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a、b是两条不同直线,α、β是两个不同平面,则下列命题错误的是(  )
A.若a⊥α,bα,则a⊥bB.若a⊥α,ba,b?β,则α⊥β
C.若a⊥α,b⊥β,αβ,则abD.若aα,aβ,则αβ

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于直线m、n和平面α、β,α⊥β的一个充分条件是(  )
A.m⊥n,mα,nβB.m⊥n,α∩β=m,n?α
C.mn,n⊥β,m?αD.mn,m⊥α,n⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证:
(1)AP⊥MN;
(2)平面MNP平面A1BD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

α、β、γ是三个平面,a、b是两条直线,有下列三个条件:①aγ,b?β②aγ,bβ③bβ,a?γ.如果命题“α∩β=a,b?γ,且________,则ab”为真命题,则可以在横线处填入的条件是(  )
A.①或②B.②或③C.①或③D.②

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的高为,底面是边长为的正方形,顶点在底面上的射影是正方形的中心是棱的中点.试求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图长方体中,,则二面角的大小为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案