精英家教网 > 高中数学 > 题目详情
14.命题p:“x>0”是“x2>0”的必要不充分条件,命题q:△ABC中,“A>B”是“sinA>sinB”的充要条件,则(  )
A.p真q假B.p∧q为真C.p∨q为假D.p假q真

分析 分别判断出p,q的真假,从而判断出复合命题的真假.

解答 解:关于命题p:“x>0”是“x2>0”的必要不充分条件,
x>0时:x2>0,是充分条件,
由x2>0,得到x>0或x<0,不是必要条件,
故命题p是假命题;
关于命题q:△ABC中,“A>B”是“sinA>sinB”的充要条件,
由正弦定理知$\frac{a}{sinA}$=$\frac{b}{sinB}$=2R,
∵sinA>sinB,
∴a>b,
∴A>B.
反之,∵A>B,∴a>b,
∵a=2RsinA,b=2RsinB,
∴sinA>sinB,
故命题q是真命题;
故选:D.

点评 本题考查了正弦定理的应用,考查复合命题的判断,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=asinx-bcosx(a,b常数,a≠0,x∈R)在x=$\frac{3π}{4}$处取得最小值,则函数y=f($\frac{π}{4}$-x)是(  )
A.偶函数且它的图象关于点(π,0)对称
B.偶函数且它的图象关于点($\frac{3π}{2}$,0)对称
C.奇函数且它的图象关于点($\frac{3π}{2}$,0)对称
D.奇函数且它的图象关于点(π,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知锐角α,β满足条件cos2α-cos2β=cos2(α-β)-$\frac{3}{2}$,求α-β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,点E.F分别在边AB,AC上,且AE=2EB,AF=$\frac{1}{2}$FC,BF,CE交于点P,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{AP}$;
(2)求$\frac{CP}{PE}$的值;
(3)若S△ABC=1,求S△ABP

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求(-$\frac{1}{2}$)-2+125${\;}^{\frac{2}{3}}$+2lg$\frac{1}{2}$-lg25的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知α为钝角,β为锐角,满足cosα=-$\frac{2\sqrt{5}}{5}$,sinβ=$\frac{\sqrt{10}}{10}$,则α-β=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.不等式|x+2|+|x-2|<8的解集为{x|-4<x<4}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.两条平行直线x+2ay=2a+2与x+2y=a+1之间的距离为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\frac{1}{3}$ax3+ax2-3ax+1的图象经过四个象限,则实数a的取值范围为(-∞,-$\frac{1}{9}$)∪($\frac{3}{5}$,+∞).

查看答案和解析>>

同步练习册答案