精英家教网 > 高中数学 > 题目详情
18.若-1<a<b<1,则下列不等式中成立的是(  )
A.-2<a-b<0B.-2<a-b<-1C.-1<a-b<0D.-1<a-b<1

分析 既然a>-1,b<1,那么a-b肯定>-2,而既然a<b,那么a-b肯定小于0,即可得出结论.

解答 解:既然a>-1,b<1,那么a-b肯定>-2,而既然a<b,那么a-b肯定小于0,
故选A.

点评 本题考查不等式的性质,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}+\overrightarrow{b}$|=2,则|3$\overrightarrow{a}$-2$\overrightarrow{b}$|=2$\sqrt{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥S-ABCD的底面是边长为1的菱形,其中∠DAB=60°,SD垂直于底
面ABCD,$SB=\sqrt{3}$;
(1)求四棱锥S-ABCD的体积;
(2)设棱SA的中点为M,求异面直线DM与SB所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.写出下列各命题的否定及其否命题.
(1)若x,y都是奇数,则x+y是偶数;
(2)若xy=0,则x=0或y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一束光线从点(-1,1)出发,经x轴反射到圆C:(x-2)2+(y-3)2=1上的最短路径长度是(  )
A.4B.5C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.椭圆C的中心为原点,焦点在y轴上,离心率$e=\frac{{\sqrt{2}}}{2}$,椭圆上的点到焦点的最短距离为$\sqrt{2}-1$,则椭圆的标准方程为$\frac{{x}^{2}}{2}+{y}^{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在底面为菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=$\sqrt{2}$,点E在PD上,且$\frac{PE}{ED}$=2.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)在棱PC上是否存在点F使得BF∥平面EAC?若存在,指出F的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对x∈R,定义函数sgn(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$
(1)求方程x2-3x+1=sgn(x)的根;
(2)设函数f(x)=[sgn(x-2)]•(x2-2|x|),若关于x的方程f(x)=x+a有3个互异的实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$内有一点P(1,-1),F为椭圆右焦点,在椭圆上有一点M,使|MP|+|MF|的值最大,则这一最大值是4+$\sqrt{5}$.

查看答案和解析>>

同步练习册答案