精英家教网 > 高中数学 > 题目详情

【题目】如图,P是圆x2+y24上的动点,P点在x轴上的射影是D,点M满足

(Ⅰ)求动点M的轨迹C的方程

(Ⅱ)设AB是轨迹C上的不同两点,点E(﹣40),且满足,若λ[1),求直线AB的斜率k的取值范围.

【答案】(Ⅰ);(Ⅱ)k∈(][).

【解析】

(Ⅰ)设,则,由,知,通过点在圆上,代入求解即可得到轨迹方程.并说明图形.

(Ⅱ)根据题意,直线的斜率存在且不为0,不妨设直线,联立,根据△可得,再根据,以及根与系数关系可得,利用函数思想求出函数的取值范围,进而可求出的取值范围.

解:(Ⅰ)设,则,由,知

在圆上,

,故点的轨迹的方程为

(Ⅱ)根据题意,直线的斜率存在且不为0,不妨设直线

联立,整理得

则△,解得

则根据韦达定理得

又因为,即

所以,从而

消去

其中

上单调递减,即有

从而

所以,解得

综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦点分别为,点是椭圆上的点,面积的最大值是

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,点是椭圆上的点,是坐标原点,若判定四边形的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,来自一带一路沿线的20国青年评选出了中国的新四大发明:高铁、扫码支付、共享单车和网购.其中共享单车既响应绿色出行号召,节能减排,保护环境,又方便人们短距离出行,增强灵活性.某城市试投放3个品牌的共享单车分别为红车、黄车、蓝车,三种车的计费标准均为每15分钟(不足15分钟按15分钟计)1元,按每日累计时长结算费用,例如某人某日共使用了24分钟,系统计时为30分钟.A同学统计了他1个月(按30天计)每天使用共享单车的时长如茎叶图所示,不考虑每月自然因素和社会因素的影响,用频率近似代替概率.设A同学每天消费元.

1)求的分布列及数学期望;

2)各品牌为推广用户使用,推出APP注册会员的优惠活动:红车月功能使用费8元,每天消费打5折;黄车月功能使用费20元,每天前15分钟免费,之后消费打8折;蓝车月功能使用费45元,每月使用22小时之内免费,超出部分按每15分钟1元计费.设分别为红车,黄车,蓝车的月消费,写出的函数关系式,参考(1)的结果,A同学下个月选择其中一个注册会员,他选哪个费用最低?

3)该城市计划3个品牌的共享单车共3000辆正式投入使用,为节约居民开支,随机调查了100名用户一周的平均使用时长如下表:

时长

(015]

(1530]

(3045]

(4560]

人数

16

45

34

5

在(2)的活动条件下,每个品牌各应该投放多少辆?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且处的切线方程为.

(1)求的解析式,并讨论其单调性.

(2)若函数,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汉中市2019年油菜花节在汉台区举办,组委会将甲、乙等6名工作人员分配到两个不同的接待处负责参与接待工作,每个接待处至少2人,则甲、乙两人不在同一接待处的分配方法共有( )

A. 12种B. 22种C. 28种D. 30种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】名学生排成一排,求分别满足下列条件的排法种数,要求列式并给出计算结果.

(1)甲不在两端;

(2)甲、乙相邻;

(3)甲、乙、丙三人两两不得相邻;

(4)甲不在排头,乙不在排尾。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)集合,对于任意,定义,对任意,定义,记为集合的元素个数,求的值;

2)在等差数列和等比数列中,,是否存在正整数,使得数列的所有项都在数列中,若存在,求出所有的,若不存在,说明理由;

3)已知当时,有,根据此信息,若对任意,都有,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,设直线分别是曲线的两条不同的切线;

(1)若函数为奇函数,且当时,有极小值为-4;

(i)求的值;

(ii)若直线亦与曲线相切,且三条不同的直线交于点,求实数m的取值范围;

(2)若直线,直线与曲线切于点B且交曲线于点D,直线与曲线切于点C且交曲线于点A,记点的横坐标分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网站用“100分制调查一社区人们的幸福度.现从调查人群中随机抽取10名,以下茎叶图记录了他们的幸福度分数(以十位数字为茎,个位数字为叶);若幸福度不低于95分,则称该人的幸福度为极幸福

1)从这10人中随机选取3人,记表示抽到极幸福的人数,求的分布列及数学期望;

2)以这10人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到极幸福的人数,求的数学期望和方差.

查看答案和解析>>

同步练习册答案