精英家教网 > 高中数学 > 题目详情
已知O(0,0),A(5,4),B(7,10),若
OP
=
OA
+λ
OB
(λ∈R),问当λ为何值时,
(1)点P在第一,三象限的角平分线上?
(2)P在第四象限内?
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:(1)可先求出P点坐标P(5+7λ,4+10λ),若点P在第一、三象限的角平分线上,则可得到5+7λ=4+10λ,解出λ即可;
(2)若P在第四象限,则可得到
5+7λ>0
4+10λ<0
,解不等式组即得λ的取值.
解答: 解:(1)第一,三象限的平分线所在直线方程y=x;
所以点P在直线y=x上;
OP
=(5+7λ,4+10λ)

∴P(5+7λ,4+10λ);
∴5+7λ=4+10λ;
λ=
1
3

(2)若点P在第四象限,则:
5+7λ>0
4+10λ<0

解得-
5
7
<λ<-
2
5
点评:考查向量加法、数乘的坐标运算,向量
OP
的坐标和点P的坐标的关系,以及一、三象限角平分线所在直线方程,在第四象限点的坐标的符号.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x∈R,则“x>1”是“x2>x”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥S-ABC中,SA=BC=2,AB=AC=SB=SC=
3
,则二面角A-BC-S的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过抛物线x2=4y的焦点F的直线l与抛物线相交于A、B两点.
(1)设抛物线在A、B处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程.
(2)若直线l与椭圆
3y2
4
+
3x2
2
=1的交点为C,D,问是否存在这样的直线l使|AF|•|CF|=|BF|•|DF|,若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C1
x2
2
+y2=1,椭圆C2
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点坐标为(
5
,0),斜率为1的直线l与椭圆C2相交于A、B两点,线段AB的中点H的坐标为(2,-1).
(1)求椭圆C2的方程;
(2)设P为椭圆C2上一点,点M、N在椭圆C1上,且
OP
=
OM
+2
ON
,则直线OM与直线ON的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一根水平放置的长方体形枕木的安全负荷与它的宽度a成正比,与它的厚度d的平方成正比,与它的长度l的平方成反比.
(1)将此枕木翻转90°(即宽度变为厚度),枕木的安全负荷如何变化?为什么?(设翻转前后枕木的安全负荷分别为y1,y2且翻转前后的比例系数相同,都为同一正常数k)
(2)现有一根横断面为半圆(已知半圆的半径为R)的木材,用它来截取成长方体形的枕木,其长度为10,问截取枕木的厚度为d为多少时,可使安全负荷y最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2sin(2x+
π
6
)(x∈[-
π
6
6
]
),在区间D上单调递增,则区间D可以是(  )
A、[0,
π
3
]
B、[
π
12
12
]
C、[
π
3
6
]
D、[
6
,π]

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算:
.
a 1a 2
a 3a 4
.
=a1a4-a2a3,若将函数f(x)=
.
-sinxcosx
1
3
.
的图象向左平移m(m>0)个单位后,所得图象对应的函数为偶函数,则m的最小值是(  )
A、
π
6
B、
π
3
C、
3
D、
5
6
π

查看答案和解析>>

科目:高中数学 来源: 题型:

通过随机调查50名个人收入不同的消费者购物方式是否喜欢网购,调查结果表明:在喜欢网购的25人中有18人是低收入的人,另外7人是高收入的人,在不喜欢网购的25人中有6人是低收入的人,另外19人是高收入的人.
(1)试根据以上数据完成2×2列联表,并用独立性检验的思想,指出有多大把握认为是否喜欢网购与个人收入高低有关系;
 喜欢网购不喜欢网购总计
低收入的人   
高收入的人   
总计   
(2)将期中某5名细环网购且收入较低的人分别编号为1、2、3、4、5,某5名细环万巩固且收入较高的人也分别编号为1、2、3、4、5,从这两组人中各任选一人进行网购交流,求被选出的2人的编号之和为3的倍数或4的倍数的概率.
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,期中n=a+b+c+d.
参考数据:
 P(K2≥k0 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

同步练习册答案