分析 (1)直接根据两角和的正切公式展开,即可得到所求的值;
(2)根据(1)求解sinα=$\frac{\sqrt{10}}{10}$,cosα=$\frac{3\sqrt{10}}{10}$,然后,利用两角差的正弦公式展开即可求解.
解答 解:(1)∵tan(α+$\frac{π}{4}$)=2,α∈(0,$\frac{π}{2}$).
∴$\frac{tanα+1}{1-tanα}$=2,
∴tanα=$\frac{1}{3}$.
(2)根据(1)知,tanα=$\frac{1}{3}$.
∴$\frac{sinα}{cosα}=\frac{1}{3}$,
∴cosα=3sinα,
∵sin2α+cos2α=1,
∴$si{n}^{2}α=\frac{1}{10}$,
∴sinα=$\frac{\sqrt{10}}{10}$,
cosα=$\frac{3\sqrt{10}}{10}$,
∴sin($α-\frac{π}{3}$)=sinαcos$\frac{π}{3}$-cosαsin$\frac{π}{3}$
=$\frac{\sqrt{10}}{10}×\frac{1}{2}-\frac{3\sqrt{10}}{10}×\frac{\sqrt{3}}{2}$
=$\frac{\sqrt{10}-3\sqrt{30}}{20}$.
点评 本题重点考查了两角差的正弦公式和正切公式的灵活运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com