【题目】某市有三所高校,其学生会学习部有“干事”人数分别为,现采用分层抽样的方法从这些“干事”中抽取名进行“大学生学习部活动现状”调查.
(1)求应从这三所高校中分别抽取的“干事”人数;
(2)若从抽取的名干事中随机选两名干事,求选出的名干事来自同一所高校的概率.
科目:高中数学 来源: 题型:
【题目】某校高二奥赛班名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生数有21人.
(1)求总人数和分数在110-115分的人数;
(2)现准备从分数在110-115的名学生(女生占)中任选3人,求其中恰好含有一名女生的概率;
(3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩(满分150分),物理成绩进行分析,下面是该生7次考试的成绩.
数学 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
已知该生的物理成绩与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?
附:对于一组数据,……,其回归线的斜率和截距的最小二乘估计分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, 底面,底面是直角梯形, .
(1)在上确定一点,使得平面,并求的值;
(2)在(1)条件下,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是圆上任意一点(是圆心),点与点关于原点对称.线段的中垂线分别与交于两点.
(1)求点的轨迹的方程;
(2)直线经过,与抛物线交于两点,与交于两点.当以为直径的圆经过时,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA=4,点D是AB的中点
(1)求证:ACBC;
(2)求证:AC//平面CDB;
(3)求二面角B-DC-B1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
将圆上每一点的纵坐标保持不变,横坐标变为原来的2倍得到曲线.
(1)写出曲线的参数方程;
(2)以坐标原点为极点,轴正半轴为极轴坐标建立极坐标系,已知直线的极坐标方程为,若分别为曲线和直线上的一点,求的最近距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,二次函数,关于的不等式的解集为,其中为非零常数,设.
(1)求的值;
(2)若存在一条与轴垂直的直线和函数的图象相切,且切点的横坐标满足,求实数的取值范围;
(3)当实数取何值时,函数存在极值?并求出相应的极值点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com