精英家教网 > 高中数学 > 题目详情
5.如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G是线段BE的中点,点F在线段CD上且GF∥平面ADE.
(1)求证:BE⊥EF;
(2)求CF长.

分析 (1)由已知可证DC⊥BE,BE⊥EC,可证BE⊥平面ECD,从而证明BE⊥EF;
(2)在平面BEC内,过点B作BQ∥CE,以B为原点,分别以$\overrightarrow{BE}$,$\overrightarrow{BQ}$,$\overrightarrow{BA}$的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则可求A,B,C,D,E,G的坐标,设坐标F(2,2,z),则可求$\overrightarrow{AD}$,$\overrightarrow{AE}$,$\overrightarrow{GF}$的坐标,设$\overrightarrow{n}$=(x,y,z)为平面ADE的法向量.由$\overrightarrow{AD}$⊥$\overrightarrow{n}$,$\overrightarrow{AD}$⊥$\overrightarrow{n}$,可得:$\left\{\begin{array}{l}{2x+2y=0}\\{2x-2z=0}\end{array}\right.$,可解得$\overrightarrow{n}$=(1,-1,1),由$\overrightarrow{GF}$⊥$\overrightarrow{n}$,可得:1×1+2×(-1)+a×1=0,解得F(2,2,1),利用两点间距离公式即可得解.

解答 证明:(1)∵四边形ABCD是矩形,AB⊥平面BEC,BE?平面BEC,
∴DC⊥BE,
∵BE⊥EC,
∵DC∩EC=C,
∴BE⊥平面ECD,
∵EF?平面ECD,
∴BE⊥EF;
(2)如图,在平面BEC内,过点B作BQ∥CE,
∵BE⊥EC,∴BQ⊥BE,
又∵AB⊥平面BEC,∴AB⊥BE,AB⊥BQ,
以B为原点,分别以$\overrightarrow{BE}$,$\overrightarrow{BQ}$,$\overrightarrow{BA}$的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,
则A(0,0,2),B(0,0,0),C(2,2,0),D(2,2,2),E(2,0,0),G(1,0,0),设坐标F(2,2,z),
则$\overrightarrow{AD}$=(2,2,0),$\overrightarrow{AE}$=(2,0,-2),$\overrightarrow{GF}$=(1,2,a),
设$\overrightarrow{n}$=(x,y,z)为平面ADE的法向量.由$\overrightarrow{AD}$⊥$\overrightarrow{n}$,$\overrightarrow{AD}$⊥$\overrightarrow{n}$,可得:$\left\{\begin{array}{l}{2x+2y=0}\\{2x-2z=0}\end{array}\right.$,令x=1,可解得:y=-1,z=1,
故$\overrightarrow{n}$=(1,-1,1),
由$\overrightarrow{GF}$⊥$\overrightarrow{n}$,可得:1×1+2×(-1)+a×1=0,解得:a=1,即可得:F(2,2,1),
故:CF=$\sqrt{(2-2)^{2}+(2-2)^{2}+(1-0)^{2}}$=1.

点评 本题主要考查了直线与平面垂直的判定,考查了建立空间直角坐标系,利用空间向量解决线面平行及线面角等立体几何问题的方法,线面垂直的判定定理及性质,平面法向量的概念及求法,线面平行时,直线和平面的法向量垂直,向量垂直的充要条件,以及线面角的定义及求法,弄清线面角和直线的方向向量和平面法向量夹角的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=2,CD=4.
(1)求证:BC⊥平面PBD;
(2)设E是侧棱PC上一点,且CE=2PE,求四面体P-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体的体积为(  )
A.6+$\frac{π}{8}$B.6+$\frac{π}{6}$C.4+$\frac{π}{8}$D.4+$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=loga2(x2-2x-3),当x<-1时为增函数,则a的取值范围是(  )
A.a>1B.-1<a<1C.-1<a<1且a≠0D.a>1或a<-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若f(x)=x(1+$\frac{m}{{2}^{x}+1}$)是偶函数,则m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆F的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆F相切.
(1)求圆O的方程;
(2)若圆O上有两点M,N关于直线x+2y=0对称,且|$\overrightarrow{MN}$|=2$\sqrt{3}$,试求直线MN的方程;
(3)若满足(2)的圆O与x轴相交于A,B两点,圆O内的动点P使得|$\overrightarrow{PA}$|,|$\overrightarrow{PO}$|,|$\overrightarrow{PB}$|成等比数列,试求$\overrightarrow{PA}•$$\overrightarrow{PB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2sin2x+sin2x-1.
(1)求函数f(x)的单调递增区间;
(2)设$f({\frac{x_0}{2}})=cos({\frac{π}{6}+α})cos({\frac{π}{6}-α})+{sin^2}α$,其中0<x0<π,求tanx0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)满足条件:(I)对任意x,y∈R,f(x+y)=f(x)f(y);(Ⅱ)对任意x,y∈R,x≠y时,$\frac{f(x)-f(y)}{x-y}$>0.
(1)若a>b,试比较f(a)与f(b)的大小;
(2)今有六个函数y=x${\;}^{\frac{1}{3}}$,y=x3,y=log3x,y=log${\;}_{\frac{1}{3}}$x,y=($\frac{1}{3}$)x,y=3x,请选出最符合上述条件的函数并记此函数为y=f(x).
①若函数g(x)定义域为R,且g(x+1)=g(x),0<x≤1时,g(x)=f(x),当2<x≤4时,求g(x)的解析式;
②若2<x≤4时,h(x)=g(x)-mx-1有两个零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.求值log345-log35=2.

查看答案和解析>>

同步练习册答案