分析 (1)由已知可证DC⊥BE,BE⊥EC,可证BE⊥平面ECD,从而证明BE⊥EF;
(2)在平面BEC内,过点B作BQ∥CE,以B为原点,分别以$\overrightarrow{BE}$,$\overrightarrow{BQ}$,$\overrightarrow{BA}$的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则可求A,B,C,D,E,G的坐标,设坐标F(2,2,z),则可求$\overrightarrow{AD}$,$\overrightarrow{AE}$,$\overrightarrow{GF}$的坐标,设$\overrightarrow{n}$=(x,y,z)为平面ADE的法向量.由$\overrightarrow{AD}$⊥$\overrightarrow{n}$,$\overrightarrow{AD}$⊥$\overrightarrow{n}$,可得:$\left\{\begin{array}{l}{2x+2y=0}\\{2x-2z=0}\end{array}\right.$,可解得$\overrightarrow{n}$=(1,-1,1),由$\overrightarrow{GF}$⊥$\overrightarrow{n}$,可得:1×1+2×(-1)+a×1=0,解得F(2,2,1),利用两点间距离公式即可得解.
解答 证明:(1)∵四边形ABCD是矩形,AB⊥平面BEC,BE?平面BEC,
∴DC⊥BE,
∵BE⊥EC,
∵DC∩EC=C,
∴BE⊥平面ECD,
∵EF?平面ECD,
∴BE⊥EF;
(2)如图,在平面BEC内,过点B作BQ∥CE,
∵BE⊥EC,∴BQ⊥BE,
又∵AB⊥平面BEC,∴AB⊥BE,AB⊥BQ,
以B为原点,分别以$\overrightarrow{BE}$,$\overrightarrow{BQ}$,$\overrightarrow{BA}$的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,
则A(0,0,2),B(0,0,0),C(2,2,0),D(2,2,2),E(2,0,0),G(1,0,0),设坐标F(2,2,z),
则$\overrightarrow{AD}$=(2,2,0),$\overrightarrow{AE}$=(2,0,-2),$\overrightarrow{GF}$=(1,2,a),
设$\overrightarrow{n}$=(x,y,z)为平面ADE的法向量.由$\overrightarrow{AD}$⊥$\overrightarrow{n}$,$\overrightarrow{AD}$⊥$\overrightarrow{n}$,可得:$\left\{\begin{array}{l}{2x+2y=0}\\{2x-2z=0}\end{array}\right.$,令x=1,可解得:y=-1,z=1,
故$\overrightarrow{n}$=(1,-1,1),
由$\overrightarrow{GF}$⊥$\overrightarrow{n}$,可得:1×1+2×(-1)+a×1=0,解得:a=1,即可得:F(2,2,1),
故:CF=$\sqrt{(2-2)^{2}+(2-2)^{2}+(1-0)^{2}}$=1.
点评 本题主要考查了直线与平面垂直的判定,考查了建立空间直角坐标系,利用空间向量解决线面平行及线面角等立体几何问题的方法,线面垂直的判定定理及性质,平面法向量的概念及求法,线面平行时,直线和平面的法向量垂直,向量垂直的充要条件,以及线面角的定义及求法,弄清线面角和直线的方向向量和平面法向量夹角的关系.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 6+$\frac{π}{8}$ | B. | 6+$\frac{π}{6}$ | C. | 4+$\frac{π}{8}$ | D. | 4+$\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a>1 | B. | -1<a<1 | C. | -1<a<1且a≠0 | D. | a>1或a<-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com