精英家教网 > 高中数学 > 题目详情
8.已知数列{an}中,an+2=an+3,且a1=1,a2=2,若bn=$\frac{9}{{(a}_{2n-1}+2){(a}_{2n}+4)}$,则数列{bn}的前n项和Tn=$\frac{n}{n+1}$.

分析 由题意可得数列{an}中,奇数项为以1为首项,公差为3的等差数列;偶数项为以2为首项,公差为3的等差数列.即有a2n-1=1+3(n-1)=3n-2,a2n=2+3(n-1)=3n-1.化简bn=$\frac{1}{n}$-$\frac{1}{n+1}$,再由数列的求和方法:裂项相消求和,化简即可得到所求和.

解答 解:an+2=an+3,且a1=1,a2=2,
可得an+2-an=3,
即有数列{an}中,奇数项为以1为首项,公差为3的等差数列;
偶数项为以2为首项,公差为3的等差数列.
即有a2n-1=1+3(n-1)=3n-2,
a2n=2+3(n-1)=3n-1.
则bn=$\frac{9}{{(a}_{2n-1}+2){(a}_{2n}+4)}$=$\frac{9}{3n•3(n+1)}$
=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
即有前n项和Tn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
故答案为:$\frac{n}{n+1}$.

点评 本题考查等差数列的通项公式的运用,考查数列的求和方法:裂项相消求和,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设函数$f(x)=\left\{\begin{array}{l}x+3,x>4\\ f(x+2)\;,x≤4\end{array}\right.$,则f(1)=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,四棱锥P-ABCD的各棱长都为a.
(1)用向量法证明BD⊥PC;
(2)求|$\overrightarrow{AC}$+$\overrightarrow{PC}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求值:log${\;}_{\frac{1}{2}}$16+3${\;}^{3+lo{g}_{3}2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{ax}{{e}^{x}}$在x=0处的切线方程为y=x.
(1)求a的值;
(2)若对任意的x∈(0,2),都有f(x)<$\frac{1}{k+2x-{x}^{2}}$成立,求k的取值范围;
(3)若函数g(x)=lnf(x)-b的两个零点为x1,x2,试判断g′($\frac{{x}_{1}+{x}_{2}}{2}$)的正负,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.有限非空数集A满足条件:若a∈A,则$\frac{1}{1-a}$∈A(a≠1).
(1)若2∈A,试写出A中的其他元素;
(2)自己设计一个满足条件的集合A,用列举法表示出来;
(3)从上面的解答中,你能得出什么结论?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.目标函数z=x-y,在如图所示的可行域内(阴影部分且包括边界),使z取得最小值的点的坐标为(  )
A.(1,1)B.(3,2)C.(5,2)D.(4,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$在同一平面内,且$\overrightarrow a$=(-1,2).
(1)若$\overrightarrow c$=(m-1,3m),且$\overrightarrow c$∥$\overrightarrow a$,求m的值;
(2)若|$\overrightarrow b$|=$\sqrt{5}$,且($\overrightarrow a$-2$\overrightarrow b$)⊥$\overrightarrow a$,求向量$\overrightarrow a$与$\overrightarrow b$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC的三个顶点坐标为A(0,0),B(8,4),C(-2,4).
(1)求证:△ABC是直角三角形;
(2)若△ABC的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m的值.

查看答案和解析>>

同步练习册答案