精英家教网 > 高中数学 > 题目详情
精英家教网如图,四边形ABCD是直角梯形,∠ABC=∠BAD=90°,SA⊥平面ABCD,SA=AB=BC=1,AD=
12

(1)求SC与平面ASD所成的角余弦;
(2)求平面SAB和平面SCD所成角的余弦.
分析:(1)作CE∥AB交AD的延长线于E,由∠ABC=∠BAD=90°,SA⊥平面ABCD,可证得SA⊥面ABCD,进而CE⊥面SAD,则∠CSE是SC与平面ASD所成的角,解Rt△CES即可得到答案.
(2)由SA⊥面ABCD,知面ABCD⊥面SAB,△SCD在面SAB的射影是△SAB,分别求出而△SAB的面积和△SCD的面积,代入cosφ=
S△SAB
S△SCD
,即可得到答案.
解答:解:(1)作CE∥AB交AD的延长线于E,
∵AB⊥AD,
∴CE⊥AD.
又∵SA⊥面ABCD,
∴CE⊥SA,SA∩AD=A,
∴CE⊥面SAD,SE是SC在面SAD内的射影,
∴∠CSE=θ是SC与平面ASD所成的角,
易得SE=
2
,SC=
3

∴在Rt△CES中,cosθ=
CE
SC
=
6
3

(2)由SA⊥面ABCD,知面ABCD⊥面SAB,
∴△SCD在面SAB的射影是△SAB,
而△SAB的面积S1=
1
2
×SA×AB=
1
2

设SC的中点是M,∵SD=CD=
5
2

∴DM⊥SC,DM=
2
2

∴△SCD的面积S2=
1
2
×SC×DM
6
4

设平面SAB和平面SCD所成角为φ,
则由面积射影定理得cosφ=
S△SAB
S△SCD
=
6
3
点评:本题考查的知识点是二面角的平面角及求法,直线与平面所成的角,其中(1)的关键是证得∠CSE是SC与平面ASD所成的角,(2)的关键是证得,△SCD在面SAB的射影是△SAB,进而cosφ=
S△SAB
S△SCD
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,A′A⊥平面ABCD.
(1) 求证:A′C∥平面BDE;
(2) 求证:平面A′AC⊥平面BDE
(3) 求平面BDE与平面ABCD所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)证明PQ⊥平面DCQ;
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E为BC的中点.
(1)求点C到面PDE的距离;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步练习册答案
关 闭