精英家教网 > 高中数学 > 题目详情
4.已知集合A={1,2,3,4},B={x|y=2x,y∈A},则A∩B=(  )
A.{2}B.{1,2}C.{2,4}D.{1,2,4}

分析 先分别求出集合A,B,由此利用交集定义能求出A∩B.

解答 解:∵集合A={1,2,3,4},
B={x|y=2x,y∈A}={$\frac{1}{2}$,1,$\frac{3}{2}$,2},
∴A∩B={1,2}.
故选:B.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)对任意的x,y∈R都有f(x+y)=f(x)+f(y),且f(2)=4,则f(1)=(  )
A.-2B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-(4a+1)x-8a+4,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$,若a=$\frac{1}{2}$,则函数f(x)的值域为R;若函数f(x)是R上的减函数,求实数a的取值范围为[$\frac{1}{4}$,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={1,2,3,4},B={x|x=2n,n∈A },则A∩B=(  )
A.{ 1,4}B.{ 2,4}C.{ 9,16}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知l是双曲线$C:\frac{x^2}{4}-\frac{y^2}{2}=1$的一条渐近线,P是l上的一点,F1,F2是C的两个焦点,若PF1⊥PF2,则△PF1F2的面积为(  )
A.12B.$3\sqrt{2}$C.$\frac{{4\sqrt{2}}}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=sinx-$\frac{1}{x}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.心理学家分析发现“喜欢空间想象”与“性别”有关,某数学兴趣小组为了验证此结论,从全球组员中按分层抽样的方法抽取50名同学(男生30人、女生20人),给每位同学立体几何题,代数题各一道,让各位同学自由选择一道题进行解答,选题情况统计如表:(单位:人)
  立体几何题 代数题 总计
 男同学 22 8 30
 女同学 8 12 20
 总计 30 20 50
(Ⅰ)能否有97.5%以上的把握认为“喜欢空间想象”与“性别”有关?
(Ⅱ)经统计得,选择做立体几何题的学生正答率为$\frac{4}{5}$,且答对的学生中男生人数是女生人数的5倍,现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行探究,记抽取的两人中答对的人数为X,求 X的分布列及数学期望.
附表及公式
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)的导数为f'(x),且f(x)=ex+2x•f'(1),则f'(0)=1-2e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合P={x|x≥2},Q={x|1<x≤2},则(∁RP)∩Q=(  )
A.[0,1)B.(0,2]C.(1,2)D.[1,2]

查看答案和解析>>

同步练习册答案