精英家教网 > 高中数学 > 题目详情
10.从区间[0,1]内任取两个数x,y,则x+y≤1的概率为$\frac{1}{2}$.

分析 由题意,本题满足几何概型的概率,利用变量对应的区域面积比求概率即可.

解答 解:在区间[0,1]任取两个数x、y,对应的区域为边长是1的正方形,面积为1,
则满足x+y≤1的区域为三角形,面积为$\frac{1}{2}×1×1$=$\frac{1}{2}$,
由几何概型的公式得到概率P=$\frac{1}{2}$,
故答案为:$\frac{1}{2}$.

点评 本题考查了几何概型的概率求法;关键是正确选择面积比求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.如图所示几何体的三视图,则该几何体的表面积为16+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2+4[sin(θ+$\frac{π}{3}$)]x-2,θ∈[0,2π).
(1)若函数f(x)为偶函数,求tanθ的值;
(2)若f(x)在[-$\sqrt{3}$,1]上是单调函数,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题,若m>$\frac{1}{4}$,则mx2-x+1=0无实根,写出该命题的逆命题、否命题、逆否命题,并判断它们的真假.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知M是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左支上一点,A、F分别为双曲线的右顶点和左焦点,且△MAF为等边三角形,则双曲线C的离心率为(  )
A.2B.4C.$\sqrt{5}$-1D.$\sqrt{5}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=xlnx+x2-ax+2(a∈R)有两个不同的零点x1,x2
(1)求实数a的取值范围;
(2)求证:x1•x2>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\frac{|sinx|}{sinx}$+$\frac{|cosx|}{cosx}$+$\frac{|tanx|}{tanx}$的值域是{3,-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.从含有两件正品a1,a2和一件次品b的3件产品中每次任取一件,每次取出后不放回,连续取两次.
(1)写出基本事件空间;
(2)求取出的两件产品中恰有一件次品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,F1,F2分别是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a,b>0)的左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M,若|MF2|=|F1F2|,则双曲线C的渐近线方程是(  )
A.y=±xB.$y=±\sqrt{3}x$C.$y=±\frac{1}{2}x$D.$y=±\frac{{\sqrt{2}}}{2}x$

查看答案和解析>>

同步练习册答案