精英家教网 > 高中数学 > 题目详情
设a为非零实数,偶函数f(x)=x2+a|x-m|+1(x∈R)在区间(2,3)上存在唯一零点,则实数a的取值范围是______.
∵偶函数f(x)=x2+a|x-m|+1
f(-x)=x2-a|x+m|+1=x 2+a|x-m|+1
|x+m|=|x-m|
2xm=-2xm
∴m=0
f(x)=x2+a|x|+1
在区间(2,3)上存在唯一零点
f(2)×f(3)<0
且在(2,3)上为单调函数
∴(5+2a)(10+3a)<0
-
10
3
<a<-
5
2

故答案为:(-
10
3
,-
5
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a为非零实数,偶函数f(x)=x2+a|x-m|+1(x∈R)在区间(2,3)上存在唯一零点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为非零实数,偶函数f(x)=x2+a|x-m|+1,x∈R.
(1)求实数m的值;
(2)试确定函数f(x)的单调区间(不需证明);
(3)若函数f(x)在区间(-3,-2)上存在零点,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设a为非零实数,偶函数f(x)=x2+a|x-m|+1,x∈R.
(1)求实数m的值;
(2)试确定函数f(x)的单调区间(不需证明);
(3)若函数f(x)在区间(-3,-2)上存在零点,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年上海市普陀区高考数学一模试卷(文科)(解析版) 题型:解答题

设a为非零实数,偶函数f(x)=x2+a|x-m|+1,x∈R.
(1)求实数m的值;
(2)试确定函数f(x)的单调区间(不需证明);
(3)若函数f(x)在区间(-3,-2)上存在零点,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年上海市徐汇区、金山区高考数学二模试卷(理科)(解析版) 题型:解答题

设a为非零实数,偶函数f(x)=x2+a|x-m|+1(x∈R)在区间(2,3)上存在唯一零点,则实数a的取值范围是   

查看答案和解析>>

同步练习册答案